scispace - formally typeset
Search or ask a question
Institution

Swedish University of Agricultural Sciences

EducationUppsala, Sweden
About: Swedish University of Agricultural Sciences is a education organization based out in Uppsala, Sweden. It is known for research contribution in the topics: Population & Soil water. The organization has 13510 authors who have published 35241 publications receiving 1414458 citations. The organization is also known as: Sveriges Lantbruksuniversitet & SLU.


Papers
More filters
Journal ArticleDOI
TL;DR: The authors compared seasonal and annual estimates of CO2 and water vapor exchange across sites in forests, grasslands, crops, and tundra that are part of an international network called FLUXNET, and investigated the responses of vegetation to environmental variables.

1,199 citations

Journal ArticleDOI
TL;DR: It was demonstrated that agricultural soil harbours a substantial diversity of nirS denitrifiers by use of the new nIRS primers, which acted as broad range primers for each of the three genes.

1,187 citations

Journal ArticleDOI
TL;DR: Spectrophotometric determination of the hydrolysis of fluorescein diacetate (FDA) was shown to be a simple, sensitive, and rapid method for determining microbial activity in soil and litter.
Abstract: Spectrophotometric determination of the hydrolysis of fluorescein diacetate (FDA) was shown to be a simple, sensitive, and rapid method for determining microbial activity in soil and litter. FDA hydrolysis was studied in soil and straw incubated for up to 3 h. Hydrolysis was found to increase linearly with soil addition. FDA hydrolysis by pure cultures of Fusarium culmorum increased linearly with mycelium addition both in shake cultures and after inoculation into sterile soil. FDA hydrolysis by Pseudomonas denitrificans increased linearly with biomass addition. The FDA hydrolytic activities in soil samples from different layers of an agricultural soil were correlated with respiration. Acetone was found to be suitable for terminating the reaction.

1,176 citations

Journal ArticleDOI
TL;DR: In this paper, a new conceptual model that explicitly identifies the processes controlling soil organic matter availability for decomposition and allows a more explicit description of the factors regulating OM decomposition under different circumstances is presented.
Abstract: The response of soil organic matter (OM) decomposition to increasing temperature is a critical aspect of ecosystem responses to global change The impacts of climate warming on decomposition dynamics have not been resolved due to apparently contradictory results from field and lab experiments, most of which has focused on labile carbon with short turnover times But the majority of total soil carbon stocks are comprised of organic carbon with turnover times of decades to centuries Understanding the response of these carbon pools to climate change is essential for forecasting longer-term changes in soil carbon storage Herein, we briefly synthesize information from recent studies that have been conducted using a wide variety of approaches In our effort to understand research to-date, we derive a new conceptual model that explicitly identifies the processes controlling soil OM availability for decomposition and allows a more explicit description of the factors regulating OM decomposition under different circumstances It explicitly defines resistance of soil OM to decomposition as being due either to its chemical conformation (quality )o r its physico-chemical protection from decomposition The former is embodied in the depolymerization process, the latter by adsorption/desorption and aggregate turnover We hypothesize a strong role for variation in temperature sensitivity as a function of reaction rates for both We conclude that important advances in understanding the temperature response of the processes that control substrate availability, depolymerization, microbial efficiency, and enzyme production will be needed to predict the fate of soil carbon stocks in a warmer world

1,175 citations

Journal ArticleDOI
29 Mar 2013-Science
TL;DR: It is shown that 50 to 70% of stored carbon in a chronosequence of boreal forested islands derives from roots and root-associated microorganisms, suggesting an alternative mechanism for the accumulation of organic matter in boreal forests during succession in the long-term absence of disturbance.
Abstract: Boreal forest soils function as a terrestrial net sink in the global carbon cycle. The prevailing dogma has focused on aboveground plant litter as a principal source of soil organic matter. Using C-14 bomb-carbon modeling, we show that 50 to 70% of stored carbon in a chronosequence of boreal forested islands derives from roots and root-associated microorganisms. Fungal biomarkers indicate impaired degradation and preservation of fungal residues in late successional forests. Furthermore, 454 pyrosequencing of molecular barcodes, in conjunction with stable isotope analyses, highlights root-associated fungi as important regulators of ecosystem carbon dynamics. Our results suggest an alternative mechanism for the accumulation of organic matter in boreal forests during succession in the long-term absence of disturbance.

1,157 citations


Authors

Showing all 13653 results

NameH-indexPapersCitations
Svante Pääbo14740784489
Lars Klareskog13169763281
Stephen Hillier129113883831
Carol V. Robinson12367051896
Jun Yu121117481186
Peter J. Anderson12096663635
David E. Clapham11938258360
Angela M. Gronenborn11356844800
David A. Wardle11040970547
Agneta Oskarsson10676640524
Jack S. Remington10348138006
Hans Ellegren10234939437
Per A. Peterson10235635788
Malcolm J. Bennett9943937207
Gunnar E. Carlsson9846632638
Network Information
Related Institutions (5)
Institut national de la recherche agronomique
68.3K papers, 3.2M citations

92% related

Wageningen University and Research Centre
54.8K papers, 2.6M citations

92% related

University of Guelph
50.5K papers, 1.7M citations

88% related

United States Forest Service
21.8K papers, 959.1K citations

87% related

Agriculture and Agri-Food Canada
21.3K papers, 748.1K citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023116
2022252
20212,311
20201,957
20191,787
20181,624