scispace - formally typeset
Search or ask a question
Institution

University of California, Santa Cruz

EducationSanta Cruz, California, United States
About: University of California, Santa Cruz is a education organization based out in Santa Cruz, California, United States. It is known for research contribution in the topics: Galaxy & Population. The organization has 15541 authors who have published 44120 publications receiving 2759983 citations. The organization is also known as: UCSC & UC, Santa Cruz.
Topics: Galaxy, Population, Stars, Redshift, Star formation


Papers
More filters
Book ChapterDOI
TL;DR: In this paper, the authors examined the range of the variation of secondary structure among the 16-S-like rRNAs and provided a basis for an accurate alignment of the corresponding regions of different primary structures.
Abstract: Publisher Summary This chapter examines the range of the variation of secondary structure among the 16-S-like rRNAs. This brings into a larger structural context a recent detailed analysis of the individual helical elements and provides a basis for an accurate alignment of the corresponding regions of different primary structures. Computer-assisted comparative is used in the analysis of aligned sequences to describe the pattern of phylogenetic conservation for each nucleotide position in 16-S rRNA. A search for matching patterns among unpaired positions in the RNA chain then produces a list of candidates for potential base–base tertiary interactions. The completion of nucleotide sequences for 34 16-S-like rRNAs includes 4 eubacteria, 4 chloroplasts, 12 mitochondria, 4 archaebacteria, and 10 eukaryotes. Secondary structure models for these molecules have been developed in the course of refinement of the E. coli model, and have been used to arrive at improved sequence alignments for the 16-S-like rRNAs. Schematic drawings of (1) eubacterial, (2) archaebacterial, (3) eukaryotic cytoplasmic, (4) plant mitochondrial, (5) fungal mitochondrial, and (6) mammalian mitochondrial structures are shown in the chapter.

693 citations

Journal ArticleDOI
TL;DR: In this article, a simulation of a 20 solar mass "delayed" supernova explosion is presented, where the authors follow the detailed evolution of material moving through the bubble at the late times appropiate to r-process nucleosynthesis.
Abstract: As a neutron star is formed by the collapse of the iron core of a massive star, its Kelvin-Helmholtz evolution is characterized by the release of gravitational binding energy as neutrinos. The interaction of these neutrinos with heated material above the neutron star generates a hot bubble in an atmosphere that is nearly in hydrostatic equilibrium and heated, after approximately 10 s, to an entropy of S/N(sub AS)k greater than or approximately = 400. The neutron-to-proton ratio for material moving outward through this bubble is set by the balance between neutrino and antineutrino capture on nucleons. Because the electron antineutrino spectrum at this time is hotter than the electron neutrino spectrum, the bubble is neutron-rich (0.38 less than or approximately = Y(sub e) less than or approximately = 0.47). Previous work using a schematic model has shown that these conditions are well suited to the production of heavy elements by the r-process. In this paper we have advanced the numerical modeling of a 20 solar mass 'delayed' supernova explosion to the point that we can follow the detailed evolution of material moving through the bubble at the late times appropiate to r-process nucleosynthesis. The supernova model predicts a final kinetic energy for the ejecta of 1.5 x 10(exp 51) ergs and leaves behind a remnant with a baryon mass of 1.50 solar mass (and a gravitational mass of 1.445 solar mass). We follow the thermodynamic and compositional evolution of 40 trajectories in rho(t), T(t), Y(sub e)(t) for a logarithmic grid of mass elements for the last approximately = 0.03 solar mass to be ejected by the proto-neutron star down to the last less than 10(exp -6) solar mass of material expelled at up to approximately = 18 s after core collapse. We find that an excellent fit to the solar r-process abundance distribution is obtained with no adjustable parameters in the nucleosynthesis calculations. Moreover, the abundances are produced in the quantities required to account for the present Galactic abundances. However, at earlier times, this one-dimensional model ejects too much material with entropies S/N(sub A)k approximately 50 and Y(sub e) approximately 0.46. This leads to an acceptable over production of N = 50 nuclei, particularly Sr-88, Y-89, and Zr-90, relative to their solar abundances. We speculate on various means to avoid the early overproduction and/or ejection of N = 50 isotonic nuclei while still producing and ejecting the correct amount of r-process material.

693 citations

Journal ArticleDOI
TL;DR: In this article, the evolution of the spectrum of the EBL between 0.1 and 1000 µm has been determined directly from galaxy spectral energy distribution (SED) observations over a wide redshift range.
Abstract: Theextragalacticbackgroundlight(EBL)isoffundamentalimportancebothforunderstanding the entire process of galaxy evolution and for"-ray astronomy, but the overall spectrum of the EBL between 0.1 and 1000µm has never been determined directly from galaxy spectral energy distribution (SED) observations over a wide redshift range. The evolving, overall spectrum of the EBL is derived here utilizing a novel method based on observations only. This is achieved from the observed evolution of the rest-frameK-band galaxy luminosity function up to redshift 4, combined with a determination of galaxy-SED-type fractions. These are based on fitting Spitzer Wide-Area Infrared Extragalactic Survey (SWIRE) templates to a multiwavelength sample of about 6000 galaxies in the redshift range from 0.2 to 1 from the All-wavelength Extended Groth Strip International Survey (AEGIS). The changing fractions of quiescent galaxies, star-forming galaxies, starburst galaxies and active galactic nucleus (AGN) galaxies in that redshift range are estimated, and two alternative extrapolations of SED types to higher redshifts are considered. This allows calculation of the evolution of the luminosity densities from the ultraviolet (UV) to the infrared (IR), the evolving star formation ratedensityoftheUniverse,theevolvingcontributiontothebolometricEBLfromthedifferent galaxy populations including AGN galaxies and the buildup of the EBL. Our EBL calculations are compared with those from a semi-analytic model, another observationally based model and observational data. The EBL uncertainties in our modelling based directly on the data are quantified, and their consequences for attenuation of very-high-energy"-rays due to pair production on the EBL are discussed. It is concluded that the EBL is well constrained from the UV to the mid-IR, but independent efforts from IR and"-ray astronomy are needed in order to reduce the uncertainties in the far-IR.

693 citations

Journal ArticleDOI
08 Apr 2010-Nature
TL;DR: It is shown that dog breeds share a higher proportion of multi-locus haplotypes unique to grey wolves from the Middle East, indicating that they are a dominant source of genetic diversity for dogs rather than wolves from east Asia, as suggested by mitochondrial DNA sequence data.
Abstract: Advances in genome technology have facilitated a new understanding of the historical and genetic processes crucial to rapid phenotypic evolution under domestication. To understand the process of dog diversification better, we conducted an extensive genome-wide survey of more than 48,000 single nucleotide polymorphisms in dogs and their wild progenitor, the grey wolf. Here we show that dog breeds share a higher proportion of multi-locus haplotypes unique to grey wolves from the Middle East, indicating that they are a dominant source of genetic diversity for dogs rather than wolves from east Asia, as suggested by mitochondrial DNA sequence data. Furthermore, we find a surprising correspondence between genetic and phenotypic/functional breed groupings but there are exceptions that suggest phenotypic diversification depended in part on the repeated crossing of individuals with novel phenotypes. Our results show that Middle Eastern wolves were a critical source of genome diversity, although interbreeding with local wolf populations clearly occurred elsewhere in the early history of specific lineages. More recently, the evolution of modern dog breeds seems to have been an iterative process that drew on a limited genetic toolkit to create remarkable phenotypic diversity.

692 citations

Journal ArticleDOI
TL;DR: In this paper, a collisional starburst model was proposed for high-redshift Lyman-break galaxies, where bursts of star formation are triggered by galaxy-galaxy mergers, and a significant fraction of LBGs are predicted to be starbursts.
Abstract: Using semi-analytic models of galaxy formation set within the cold dark matter (CDM) merging hierarchy, we investigate several scenarios for the nature of the high-redshift ) Lyman-break galaxies (LBGs). We consider a ‘collisional starburst’ model in which bursts of star formation are triggered by galaxy–galaxy mergers, and find that a significant fraction of LBGs are predicted to be starbursts. This model reproduces the observed comoving number density of bright LBGs as a function of redshift and the observed luminosity function at and with a reasonable amount of dust extinction. Model galaxies at have star formation rates, half-light radii, colours and internal velocity dispersions that are in good agreement with the data. Global quantities such as the star formation rate density and cold gas and metal content of the Universe as a function of redshift also agree well. Two ‘quiescent’ models without starbursts are also investigated. In one, the star formation efficiency in galaxies remains constant with redshift, while in the other, it scales inversely with disc dynamical time, and thus increases rapidly with redshift. The first quiescent model is strongly ruled out, as it does not produce enough high-redshift galaxies once realistic dust extinction is accounted for. The second quiescent model fits marginally, but underproduces cold gas and very bright galaxies at high redshift. A general conclusion is that star formation at high redshift must be more efficient than locally. The collisional starburst model appears to accomplish this naturally without violating other observational constraints.

692 citations


Authors

Showing all 15733 results

NameH-indexPapersCitations
David J. Schlegel193600193972
David R. Williams1782034138789
John R. Yates1771036129029
David Haussler172488224960
Evan E. Eichler170567150409
Anton M. Koekemoer1681127106796
Mark Gerstein168751149578
Alexander S. Szalay166936145745
Charles M. Lieber165521132811
Jorge E. Cortes1632784124154
M. Razzano155515106357
Lars Hernquist14859888554
Aaron Dominguez1471968113224
Taeghwan Hyeon13956375814
Garth D. Illingworth13750561793
Network Information
Related Institutions (5)
University of California, Berkeley
265.6K papers, 16.8M citations

94% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

93% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

92% related

Max Planck Society
406.2K papers, 19.5M citations

92% related

Stanford University
320.3K papers, 21.8M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202351
2022328
20212,157
20202,353
20192,209
20182,157