scispace - formally typeset
Search or ask a question
Institution

University of California, Santa Cruz

EducationSanta Cruz, California, United States
About: University of California, Santa Cruz is a education organization based out in Santa Cruz, California, United States. It is known for research contribution in the topics: Galaxy & Population. The organization has 15541 authors who have published 44120 publications receiving 2759983 citations. The organization is also known as: UCSC & UC, Santa Cruz.
Topics: Galaxy, Population, Stars, Redshift, Star formation


Papers
More filters
Journal ArticleDOI
TL;DR: The results indicated that both nucleation and fibril growth were controlled by hydrophobic and electrostatic interactions.
Abstract: In the search for the molecular mechanism of insulin fibrillation, the kinetics of insulin fibril formation were studied under different conditions using the fluorescent dye thioflavin T (ThT). The effect of insulin concentration, agitation, pH, ionic strength, anions, seeding, and addition of 1-anilinonaphthalene-8-sulfonic acid (ANS), urea, TMAO, sucrose, and ThT on the kinetics of fibrillation was investigated. The kinetics of the fibrillation process could be described by the lag time for formation of stable nuclei (nucleation) and the apparent rate constant for the growth of fibrils (elongation). The addition of seeds eliminated the lag phase. An increase in insulin concentration resulted in shorter lag times and faster growth of fibrils. Shorter lag times and faster growth of fibrils were seen at acidic pH versus neutral pH, whereas an increase in ionic strength resulted in shorter lag times and slower growth of fibrils. There was no clear correlation between the rate of fibril elongation and ionic ...

1,096 citations

Journal ArticleDOI
14 Jan 2010-Nature
TL;DR: Hydrodynamical simulations in a framework assuming the presence of CDM and a cosmological constant are reported in which the inhomogeneous interstellar medium is resolved and the analogues of dwarf galaxies—bulgeless and with shallow central dark-matter profiles—arise naturally in these simulations.
Abstract: For almost two decades the properties of ‘dwarf’ galaxies have challenged the cold dark matter (CDM) model of galaxy formation^1. Most observed dwarf galaxies consist of a rotating stellar disk^2 embedded in a massive dark-matter halo with a near-constant-density core^3. Models based on the dominance of CDM, however, invariably form galaxies with dense spheroidal stellar bulges and steep central dark-matter profiles^(4,5,6,) because low-angular-momentum baryons and dark matter sink to the centres of galaxies through accretion and repeated mergers^7. Processes that decrease the central density of CDM halos^8 have been identified, but have not yet reconciled theory with observations of present-day dwarfs. This failure is potentially catastrophic for the CDM model, possibly requiring a different dark-matter particle candidate^9. Here we report hydrodynamical simulations (in a framework^(10) assuming the presence of CDM and a cosmological constant) in which the inhomogeneous interstellar medium is resolved. Strong outflows from supernovae remove low-angular-momentum gas, which inhibits the formation of bulges and decreases the dark-matter density to less than half of what it would otherwise be within the central kiloparsec. The analogues of dwarf galaxies—bulgeless and with shallow central dark-matter profiles—arise naturally in these simulations.

1,095 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied the probability that a setJ consisting of a finite union of intervals contains no eigenvalues for the finite N Gaussian Orthogonal (β = 1) and Gaussian Symplectic (β= 4) ensembles and their respective scaling limits both in the bulk and at the edge of the spectrum.
Abstract: The focus of this paper is on the probability,Eβ(O;J), that a setJ consisting of a finite union of intervals contains no eigenvalues for the finiteN Gaussian Orthogonal (β=1) and Gaussian Symplectic (β=4) Ensembles and their respective scaling limits both in the bulk and at the edge of the spectrum. We show how these probabilities can be expressed in terms of quantities arising in the corresponding unitary (β=2) ensembles. Our most explicit new results concern the distribution of the largest eigenvalue in each of these ensembles. In the edge scaling limit we show that these largest eigenvalue distributions are given in terms of a particular Painleve II function.

1,083 citations


Authors

Showing all 15733 results

NameH-indexPapersCitations
David J. Schlegel193600193972
David R. Williams1782034138789
John R. Yates1771036129029
David Haussler172488224960
Evan E. Eichler170567150409
Anton M. Koekemoer1681127106796
Mark Gerstein168751149578
Alexander S. Szalay166936145745
Charles M. Lieber165521132811
Jorge E. Cortes1632784124154
M. Razzano155515106357
Lars Hernquist14859888554
Aaron Dominguez1471968113224
Taeghwan Hyeon13956375814
Garth D. Illingworth13750561793
Network Information
Related Institutions (5)
University of California, Berkeley
265.6K papers, 16.8M citations

94% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

93% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

92% related

Max Planck Society
406.2K papers, 19.5M citations

92% related

Stanford University
320.3K papers, 21.8M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202351
2022328
20212,157
20202,353
20192,209
20182,157