scispace - formally typeset
Search or ask a question
Institution

University of California, Santa Cruz

EducationSanta Cruz, California, United States
About: University of California, Santa Cruz is a education organization based out in Santa Cruz, California, United States. It is known for research contribution in the topics: Galaxy & Population. The organization has 15541 authors who have published 44120 publications receiving 2759983 citations. The organization is also known as: UCSC & UC, Santa Cruz.
Topics: Galaxy, Population, Stars, Redshift, Star formation


Papers
More filters
Journal ArticleDOI
16 Jul 2004-Science
TL;DR: Pikitch et al. as discussed by the authors describe the potential benefits of implementation of ecosystem-based fishery management that, in their view, far outweigh the difficulties of making the transition from a management system based on maximizing individual species.
Abstract: Ecosystem-based fishery management (EBFM) is a new direction for fishery management, essentially reversing the order of management priorities so that management starts with the ecosystem rather than a target species. EBFM aims to sustain healthy marine ecosystems and the fisheries they support. Pikitch et al . describe the potential benefits of implementation of EBFM that, in their view, far outweigh the difficulties of making the transition from a management system based on maximizing individual species.

2,011 citations

Journal ArticleDOI
Anton M. Koekemoer1, Sandra M. Faber2, Henry C. Ferguson1, Norman A. Grogin1, Dale D. Kocevski2, David C. Koo2, Kamson Lai2, Jennifer M. Lotz1, Ray A. Lucas1, Elizabeth J. McGrath2, Sara Ogaz1, Abhijith Rajan1, Adam G. Riess3, S. Rodney3, L. G. Strolger4, Stefano Casertano1, Marco Castellano, Tomas Dahlen1, Mark Dickinson, Timothy Dolch3, Adriano Fontana, Mauro Giavalisco5, Andrea Grazian, Yicheng Guo5, Nimish P. Hathi6, Kuang-Han Huang3, Kuang-Han Huang1, Arjen van der Wel7, Hao Jing Yan8, Viviana Acquaviva9, David M. Alexander10, Omar Almaini11, Matthew L. N. Ashby12, Marco Barden13, Eric F. Bell14, Frédéric Bournaud15, Thomas M. Brown1, Karina Caputi16, Paolo Cassata5, Peter Challis17, Ranga-Ram Chary18, Edmond Cheung2, Michele Cirasuolo16, Christopher J. Conselice11, Asantha Cooray19, Darren J. Croton20, Emanuele Daddi15, Romeel Davé21, Duilia F. de Mello22, Loic de Ravel16, Avishai Dekel23, Jennifer L. Donley1, James Dunlop16, Aaron A. Dutton24, David Elbaz25, Giovanni Fazio12, Alexei V. Filippenko26, Steven L. Finkelstein27, Chris Frazer19, Jonathan P. Gardner22, Peter M. Garnavich28, Eric Gawiser9, Ruth Gruetzbauch11, Will G. Hartley11, B. Haussler11, Jessica Herrington14, Philip F. Hopkins26, J.-S. Huang29, Saurabh Jha9, Andrew Johnson2, Jeyhan S. Kartaltepe3, Ali Ahmad Khostovan19, Robert P. Kirshner12, Caterina Lani11, Kyoung-Soo Lee30, Weidong Li26, Piero Madau2, Patrick J. McCarthy6, Daniel H. McIntosh31, Ross J. McLure, Conor McPartland2, Bahram Mobasher32, Heidi Moreira9, Alice Mortlock11, Leonidas A. Moustakas18, Mark Mozena2, Kirpal Nandra33, Jeffrey A. Newman34, Jennifer L. Nielsen31, Sami Niemi1, Kai G. Noeske1, Casey Papovich27, Laura Pentericci, Alexandra Pope, Joel R. Primack2, Swara Ravindranath35, Naveen A. Reddy, Alvio Renzini, Hans Walter Rix7, Aday R. Robaina, David J. Rosario2, Piero Rosati7, S. Salimbeni5, Claudia Scarlata18, Brian Siana18, Luc Simard36, Joseph Smidt19, D. Snyder2, Rachel S. Somerville1, Hyron Spinrad26, Amber N. Straughn22, Olivia Telford34, Harry I. Teplitz18, Jonathan R. Trump2, Carlos J. Vargas9, Carolin Villforth1, C. Wagner31, P. Wandro2, Risa H. Wechsler37, Benjamin J. Weiner21, Tommy Wiklind1, Vivienne Wild, Grant W. Wilson5, Stijn Wuyts12, Min S. Yun5 
TL;DR: In this paper, the authors describe the Hubble Space Telescope imaging data products and data reduction procedures for the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS).
Abstract: This paper describes the Hubble Space Telescope imaging data products and data reduction procedures for the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). This survey is designed to document the evolution of galaxies and black holes at z 1.5-8, and to study Type Ia supernovae at z > 1.5. Five premier multi-wavelength sky regions are selected, each with extensive multi-wavelength observations. The primary CANDELS data consist of imaging obtained in the Wide Field Camera 3 infrared channel (WFC3/IR) and the WFC3 ultraviolet/optical channel, along with the Advanced Camera for Surveys (ACS). The CANDELS/Deep survey covers ~125 arcmin2 within GOODS-N and GOODS-S, while the remainder consists of the CANDELS/Wide survey, achieving a total of ~800 arcmin2 across GOODS and three additional fields (Extended Groth Strip, COSMOS, and Ultra-Deep Survey). We summarize the observational aspects of the survey as motivated by the scientific goals and present a detailed description of the data reduction procedures and products from the survey. Our data reduction methods utilize the most up-to-date calibration files and image combination procedures. We have paid special attention to correcting a range of instrumental effects, including charge transfer efficiency degradation for ACS, removal of electronic bias-striping present in ACS data after Servicing Mission 4, and persistence effects and other artifacts in WFC3/IR. For each field, we release mosaics for individual epochs and eventual mosaics containing data from all epochs combined, to facilitate photometric variability studies and the deepest possible photometry. A more detailed overview of the science goals and observational design of the survey are presented in a companion paper.

2,011 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss how metallicity affects the evolution and final fate of massive stars, and derive the relative populations of stellar populations as a function of metallity.
Abstract: How massive stars die-what sort of explosion and remnant each produces-depends chiefly on the masses of their helium cores and hydrogen envelopes at death. For single stars, stellar winds are the only means of mass loss, and these are a function of the metallicity of the star. We discuss how metallicity, and a simplified prescription for its effect on mass loss, affects the evolution and final fate of massive stars. We map, as a function of mass and metallicity, where black holes and neutron stars are likely to form and where different types of supernovae are produced. Integrating over an initial mass function, we derive the relative populations as a function of metallicity. Provided that single stars rotate rapidly enough at death, we speculate on stellar populations that might produce gamma-ray bursts and jet-driven supernovae.

2,007 citations

Journal ArticleDOI
TL;DR: Online implementations of tRNAscan-SE, snoscan and snoGPS are described that make these RNA detection tools accessible to a wider range of research biologists.
Abstract: Transfer RNAs (tRNAs) and small nucleolar RNAs (snoRNAs) are two of the largest classes of non-protein-coding RNAs. Conventional gene finders that detect protein-coding genes do not find tRNA and snoRNA genes because they lack the codon structure and statistical signatures of protein-coding genes. Previously, we developed tRNAscan-SE, snoscan and snoGPS for the detection of tRNAs, methylation-guide snoRNAs and pseudouridylation-guide snoRNAs, respectively. tRNAscan-SE is routinely applied to completed genomes, resulting in the identification of thousands of tRNA genes. Snoscan has successfully detected methylation-guide snoRNAs in a variety of eukaryotes and archaea, and snoGPS has identified novel pseudouridylation-guide snoRNAs in yeast and mammals. Although these programs have been quite successful at RNA gene detection, their use has been limited by the need to install and configure the software packages on UNIX workstations. Here, we describe online implementations of these RNA detection tools that make these programs accessible to a wider range of research biologists. The tRNAscan-SE, snoscan and snoGPS servers are available at http://lowelab.ucsc.edu/tRNAscan-SE/, http://lowelab.ucsc.edu/snoscan/ and http://lowelab.ucsc.edu/snoGPS/, respectively.

2,000 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the current understanding of the lives and deaths of massive stars, with special attention to the relevant nuclear and stellar physics, and focused on their post-helium-burning evolution.
Abstract: amount of energy, a tiny fraction of which is sufficient to explode the star as a supernova. The authors examine our current understanding of the lives and deaths of massive stars, with special attention to the relevant nuclear and stellar physics. Emphasis is placed upon their post-helium-burning evolution. Current views regarding the supernova explosion mechanism are reviewed, and the hydrodynamics of supernova shock propagation and ‘‘fallback’’ is discussed. The calculated neutron star masses, supernova light curves, and spectra from these model stars are shown to be consistent with observations. During all phases, particular attention is paid to the nucleosynthesis of heavy elements. Such stars are capable of producing, with few exceptions, the isotopes between mass 16 and 88 as well as a large fraction of still heavier elements made by the r and p processes.

1,981 citations


Authors

Showing all 15733 results

NameH-indexPapersCitations
David J. Schlegel193600193972
David R. Williams1782034138789
John R. Yates1771036129029
David Haussler172488224960
Evan E. Eichler170567150409
Anton M. Koekemoer1681127106796
Mark Gerstein168751149578
Alexander S. Szalay166936145745
Charles M. Lieber165521132811
Jorge E. Cortes1632784124154
M. Razzano155515106357
Lars Hernquist14859888554
Aaron Dominguez1471968113224
Taeghwan Hyeon13956375814
Garth D. Illingworth13750561793
Network Information
Related Institutions (5)
University of California, Berkeley
265.6K papers, 16.8M citations

94% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

93% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

92% related

Max Planck Society
406.2K papers, 19.5M citations

92% related

Stanford University
320.3K papers, 21.8M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202351
2022328
20212,157
20202,353
20192,209
20182,157