scispace - formally typeset
Search or ask a question
Institution

University of California, Santa Cruz

EducationSanta Cruz, California, United States
About: University of California, Santa Cruz is a education organization based out in Santa Cruz, California, United States. It is known for research contribution in the topics: Galaxy & Population. The organization has 15541 authors who have published 44120 publications receiving 2759983 citations. The organization is also known as: UCSC & UC, Santa Cruz.
Topics: Galaxy, Population, Stars, Redshift, Star formation


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors used data of soil organic carbon (SOC) in 405 profiles collected from 135 sites across the plateau and a satellite-based dataset of enhanced vegetation index (EVI) during 2001-2004 to estimate storage and spatial patterns of SOC in the alpine grasslands.
Abstract: The soils of the Qinghai-Tibetan Plateau store a large amount of organic carbon, but the magnitude, spatial patterns and environmental controls of the storage are little investigated. In this study, using data of soil organic carbon (SOC) in 405 profiles collected from 135 sites across the plateau and a satellite-based dataset of enhanced vegetation index (EVI) during 2001‐2004, we estimated storage and spatial patterns of SOC in the alpine grasslands. We also explored the relationships between SOC density (soil carbon storage per area) and climatic variables and soil texture. Our results indicated that SOC storage in the top 1m in the alpine grasslands was estimated at 7.4Pg C (1Pg 510 15 g), with an average density of 6.5kgm � 2 . The density of SOC decreased from the southeastern to the northwestern areas, corresponding to the precipitation gradient. The SOC density increased significantly with soil moisture, clay and silt content, but weakly with mean annual temperature. These variables could together explain about 72% of total variation in SOC density, of which 54% was attributed to soil moisture, suggesting a key role of soil moisture in shaping spatial patterns of SOC density in the alpine grasslands.

468 citations

Journal ArticleDOI
TL;DR: The structural data reveal the molecular basis for EphB2–ephrin-A5 signaling and provide a framework for understanding the complexities of functional interactions and crosstalk between A- and B-subclass Eph receptors and ephrins.
Abstract: The interactions between Eph receptor tyrosine kinases and their ephrin ligands regulate cell migration and axon pathfinding. The EphA receptors are generally thought to become activated by ephrin-A ligands, whereas the EphB receptors interact with ephrin-B ligands. Here we show that two of the most widely studied of these molecules, EphB2 and ephrin-A5, which have never been described to interact with each other, do in fact bind one another with high affinity. Exposure of EphB2-expressing cells to ephrin-A5 leads to receptor clustering, autophosphorylation and initiation of downstream signaling. Ephrin-A5 induces EphB2-mediated growth cone collapse and neurite retraction in a model system. We further show, using X-ray crystallography, that the ephrin-A5-EphB2 complex is a heterodimer and is architecturally distinct from the tetrameric EphB2-ephrin-B2 structure. The structural data reveal the molecular basis for EphB2-ephrin-A5 signaling and provide a framework for understanding the complexities of functional interactions and crosstalk between A- and B-subclass Eph receptors and ephrins.

468 citations

Journal ArticleDOI
TL;DR: This work has used a variety of techniques to determine the cellular and structural basis for certain of these end bud activities of mammary ductal morphogenesis and elongation in the immature mouse.

468 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a mathematically rigorous foundation for rational vertex operator algebras and their automorphisms in the theory of rational orbifold models in conformal field theory.
Abstract: The goal of the present paper is to provide a mathematically rigorous foundation to certain aspects of the theory of rational orbifold models in conformal field theory, in other words the theory of rational vertex operator algebras and their automorphisms.

468 citations

Journal ArticleDOI
TL;DR: In this article, the authors detect compact, star-forming galaxies (cSFGs) whose number densities, masses, sizes, and star formation rates qualify them as likely progenitors of compact, quiescent, massive galaxies.
Abstract: We combine high-resolution Hubble Space Telescope/WFC3 images with multi-wavelength photometry to track the evolution of structure and activity of massive (M_*> 10^10 M_☉) galaxies at redshifts z = 1.4-3 in two fields of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. We detect compact, star-forming galaxies (cSFGs) whose number densities, masses, sizes, and star formation rates (SFRs) qualify them as likely progenitors of compact, quiescent, massive galaxies (cQGs) at z = 1.5-3. At z≲2, cSFGs present SFR = 100-200 M_☉ yr^–1, yet their specific star formation rates (sSFR ~ 10^–9 yr^–1) are typically half that of other massive SFGs at the same epoch, and host X-ray luminous active galactic nuclei (AGNs) 30 times (~30%) more frequently. These properties suggest that cSFGs are formed by gas-rich processes (mergers or disk-instabilities) that induce a compact starburst and feed an AGN, which, in turn, quench the star formation on dynamical timescales (few 10^8 yr). The cSFGs are continuously being formed at z = 2-3 and fade to cQGs down to z ~ 1.5. After this epoch, cSFGs are rare, thereby truncating the formation of new cQGs. Meanwhile, down to z = 1, existing cQGs continue to enlarge to match local QGs in size, while less-gas-rich mergers and other secular mechanisms shepherd (larger) SFGs as later arrivals to the red sequence. In summary, we propose two evolutionary tracks of QG formation: an early (z≲2), formation path of rapidly quenched cSFGs fading into cQGs that later enlarge within the quiescent phase, and a late-arrival (z≳2) path in which larger SFGs form extended QGs without passing through a compact state.

467 citations


Authors

Showing all 15733 results

NameH-indexPapersCitations
David J. Schlegel193600193972
David R. Williams1782034138789
John R. Yates1771036129029
David Haussler172488224960
Evan E. Eichler170567150409
Anton M. Koekemoer1681127106796
Mark Gerstein168751149578
Alexander S. Szalay166936145745
Charles M. Lieber165521132811
Jorge E. Cortes1632784124154
M. Razzano155515106357
Lars Hernquist14859888554
Aaron Dominguez1471968113224
Taeghwan Hyeon13956375814
Garth D. Illingworth13750561793
Network Information
Related Institutions (5)
University of California, Berkeley
265.6K papers, 16.8M citations

94% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

93% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

92% related

Max Planck Society
406.2K papers, 19.5M citations

92% related

Stanford University
320.3K papers, 21.8M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202351
2022328
20212,157
20202,353
20192,209
20182,157