scispace - formally typeset
Search or ask a question

Showing papers by "University of Houston published in 2017"


Journal ArticleDOI
TL;DR: Based on hypotheses involving social exchange, attribution, and self-enhancement, this paper carried out a meta-analytic assessment of OST using results from 558 studies and found that OST was generally successful in its predictions concerning both the antecedents of POS (leadership, employee-organization context, human resource practices, and working conditions) and its consequences (employee orientation toward the organization and work, employee performance, and well-being).

1,138 citations


Journal ArticleDOI
TL;DR: A novel causal role of aberrant gut microbiota in contributing to the pathogenesis of hypertension is described and the significance of early intervention for pre-hypertension was emphasized.
Abstract: Recently, the potential role of gut microbiome in metabolic diseases has been revealed, especially in cardiovascular diseases. Hypertension is one of the most prevalent cardiovascular diseases worldwide, yet whether gut microbiota dysbiosis participates in the development of hypertension remains largely unknown. To investigate this issue, we carried out comprehensive metagenomic and metabolomic analyses in a cohort of 41 healthy controls, 56 subjects with pre-hypertension, 99 individuals with primary hypertension, and performed fecal microbiota transplantation from patients to germ-free mice. Compared to the healthy controls, we found dramatically decreased microbial richness and diversity, Prevotella-dominated gut enterotype, distinct metagenomic composition with reduced bacteria associated with healthy status and overgrowth of bacteria such as Prevotella and Klebsiella, and disease-linked microbial function in both pre-hypertensive and hypertensive populations. Unexpectedly, the microbiome characteristic in pre-hypertension group was quite similar to that in hypertension. The metabolism changes of host with pre-hypertension or hypertension were identified to be closely linked to gut microbiome dysbiosis. And a disease classifier based on microbiota and metabolites was constructed to discriminate pre-hypertensive and hypertensive individuals from controls accurately. Furthermore, by fecal transplantation from hypertensive human donors to germ-free mice, elevated blood pressure was observed to be transferrable through microbiota, and the direct influence of gut microbiota on blood pressure of the host was demonstrated. Overall, our results describe a novel causal role of aberrant gut microbiota in contributing to the pathogenesis of hypertension. And the significance of early intervention for pre-hypertension was emphasized.

965 citations


Journal ArticleDOI
TL;DR: The goal is to assist the readers in refining the motivation, problem formulation, and methodology of powerful machine learning algorithms in the context of future networks in order to tap into hitherto unexplored applications and services.
Abstract: Next-generation wireless networks are expected to support extremely high data rates and radically new applications, which require a new wireless radio technology paradigm. The challenge is that of assisting the radio in intelligent adaptive learning and decision making, so that the diverse requirements of next-generation wireless networks can be satisfied. Machine learning is one of the most promising artificial intelligence tools, conceived to support smart radio terminals. Future smart 5G mobile terminals are expected to autonomously access the most meritorious spectral bands with the aid of sophisticated spectral efficiency learning and inference, in order to control the transmission power, while relying on energy efficiency learning/inference and simultaneously adjusting the transmission protocols with the aid of quality of service learning/inference. Hence we briefly review the rudimentary concepts of machine learning and propose their employment in the compelling applications of 5G networks, including cognitive radios, massive MIMOs, femto/small cells, heterogeneous networks, smart grid, energy harvesting, device-todevice communications, and so on. Our goal is to assist the readers in refining the motivation, problem formulation, and methodology of powerful machine learning algorithms in the context of future networks in order to tap into hitherto unexplored applications and services.

958 citations


Journal ArticleDOI
TL;DR: In this paper, a facile and scalable approach to fabricate highly efficient three-dimensional (3D) bulk catalysts of core-shell nanostructures, in which few-layer NiFe layered double hydroxide (LDH) nanosheets are grown on Cu nanowire cores supported on Cu foams, toward overall water splitting.
Abstract: Developing highly active and low-cost electrocatalysts with superior durability for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is a grand challenge to produce hydrogen by electrolysis of water. Here, we report on a facile and scalable approach to fabricate highly efficient three-dimensional (3D) bulk catalysts of core–shell nanostructures, in which few-layer NiFe layered double hydroxide (LDH) nanosheets are grown on Cu nanowire cores supported on Cu foams, toward overall water splitting. Remarkably, benefiting from the 3D hierarchical nanoarchitecture with large surface areas, fast electron transport, and open-channels for effective gas release, the resulting 3D self-standing catalysts exhibit outstanding OER activity as well as excellent HER performance in an alkaline medium. Using them as bifunctional catalysts for overall water splitting, a current density of 10 mA cm−2 was achieved at a voltage of 1.54 V, and 100 mA cm−2 at 1.69 V with excellent durability, which is much better than the benchmark of IrO2(+)//Pt(−) electrodes. Our 3D core–shell electrocatalysts significantly advance the research towards large-scale practical water electrolysis.

902 citations


Journal ArticleDOI
TL;DR: This review is a discussion of the relevance of cerebral oxidative stress to impairment of emotional and mental well-being in neuropsychiatric disorders, including anxiety disorders and depression.
Abstract: Biochemical integrity of the brain is vital for normal functioning of the central nervous system (CNS). One of the factors contributing to cerebral biochemical impairment is a chemical process called oxidative stress. Oxidative stress occurs upon excessive free radical production resulting from an insufficiency of the counteracting antioxidant response system. The brain, with its high oxygen consumption and lipid-rich content, is highly susceptible to oxidative stress. Therefore, oxidative stress–induced damage to the brain has a strong potential to negatively impact normal CNS functions. Although oxidative stress has historically been considered to be involved mainly in neurodegenerative disorders such as Alzheimer disease, Huntington disease, and Parkinson disease, its involvement in neuropsychiatric disorders, including anxiety disorders and depression, is beginning to be recognized. This review is a discussion of the relevance of cerebral oxidative stress to impairment of emotional and mental well-being.

674 citations


Journal ArticleDOI
17 Nov 2017-Science
TL;DR: Recent research points the way toward chemical recycling methods with lower energy requirements, compatibilization of mixed plastic wastes to avoid the need for sorting, and expanding recycling technologies to traditionally nonrecyclable polymers.
Abstract: The environmental consequences of plastic solid waste are visible in the ever-increasing levels of global plastic pollution both on land and in the oceans. But although there are important economic and environmental incentives for plastics recycling, end-of-life treatment options for plastic solid waste are in practice quite limited. Presorting of plastics before recycling is costly and time-intensive, recycling requires large amounts of energy and often leads to low-quality polymers, and current technologies cannot be applied to many polymeric materials. Recent research points the way toward chemical recycling methods with lower energy requirements, compatibilization of mixed plastic wastes to avoid the need for sorting, and expanding recycling technologies to traditionally nonrecyclable polymers.

592 citations


Journal ArticleDOI
TL;DR: Three systems that coupled with industrially established cathodes and electrolytes exhibit long cycle life, fast kinetics, high anode specific capacity, and several examples of state-of-the-art specific energy/energy density are demonstrated.
Abstract: Aqueous rechargeable batteries are promising for grid storage and electric vehicles, but they suffer from poor cycle life due to anode instability. Exploiting stable ion-coordination charge storage and chemical inertness towards aqueous electrolytes, quinones are now reported as stable anodes.

546 citations


Journal ArticleDOI
TL;DR: The UP produces symptom reduction equivalent to criterion standard evidence-based psychological treatments for anxiety disorders with less attrition, and it may be possible to use 1 protocol instead of multiple SDPs to more efficiently treat the most commonly occurring anxiety and depressive disorders.
Abstract: Importance Transdiagnostic interventions have been developed to address barriers to the dissemination of evidence-based psychological treatments, but only a few preliminary studies have compared these approaches with existing evidence-based psychological treatments. Objective To determine whether the Unified Protocol for Transdiagnostic Treatment of Emotional Disorders (UP) is at least as efficacious as single-disorder protocols (SDPs) in the treatment of anxiety disorders. Design, Setting, and Participants From June 23, 2011, to March 5, 2015, a total of 223 patients at an outpatient treatment center with a principal diagnosis of panic disorder with or without agoraphobia, generalized anxiety disorder, obsessive-compulsive disorder, or social anxiety disorder were randomly assigned by principal diagnosis to the UP, an SDP, or a waitlist control condition. Patients received up to 16 sessions of the UP or an SDP for 16 to 21 weeks. Outcomes were assessed at baseline, after treatment, and at 6-month follow-up. Analysis in this equivalence trial was based on intention to treat. Interventions The UP or SDPs. Main Outcomes and Measures Blinded evaluations of principal diagnosis clinical severity rating were used to evaluate an a priori hypothesis of equivalence between the UP and SDPs. Results Among the 223 patients (124 women and 99 men; mean [SD] age, 31.1 [11.0] years), 88 were randomized to receive the UP, 91 to receive an SDP, and 44 to the waitlist control condition. Patients were more likely to complete treatment with the UP than with SDPs (odds ratio, 3.11; 95% CI, 1.44-6.74). Both the UP (Cohen d , −0.93; 95% CI, −1.29 to −0.57) and SDPs (Cohen d , −1.08; 95% CI, −1.43 to −0.73) were superior to the waitlist control condition at acute outcome. Reductions in clinical severity rating from baseline to the end of treatment (β, 0.25; 95% CI, −0.26 to 0.75) and from baseline to the 6-month follow-up (β, 0.16; 95% CI, −0.39 to 0.70) indicated statistical equivalence between the UP and SDPs. Conclusions and Relevance The UP produces symptom reduction equivalent to criterion standard evidence-based psychological treatments for anxiety disorders with less attrition. Thus, it may be possible to use 1 protocol instead of multiple SDPs to more efficiently treat the most commonly occurring anxiety and depressive disorders. Trial Registration clinicaltrials.gov Identifier:NCT01243606

498 citations


Posted Content
Yonit Hochberg1, Yonit Hochberg2, A. N. Villano3, Andrei Afanasev4  +238 moreInstitutions (98)
TL;DR: The white paper summarizes the workshop "U.S. Cosmic Visions: New Ideas in Dark Matter" held at University of Maryland on March 23-25, 2017.
Abstract: This white paper summarizes the workshop "U.S. Cosmic Visions: New Ideas in Dark Matter" held at University of Maryland on March 23-25, 2017.

464 citations


Journal ArticleDOI
TL;DR: In this article, the authors present measurements of bulk properties of the matter produced in Au+Au collisions at sNN=7.7,11.5,19.6,27, and 39 GeV using identified hadrons from the STAR experiment in the Beam Energy Scan (BES) Program at the Relativistic Heavy Ion Collider (RHIC).
Abstract: © 2017 American Physical Society. We present measurements of bulk properties of the matter produced in Au+Au collisions at sNN=7.7,11.5,19.6,27, and 39 GeV using identified hadrons (π±, K±, p, and p) from the STAR experiment in the Beam Energy Scan (BES) Program at the Relativistic Heavy Ion Collider (RHIC). Midrapidity (|y| < 0.1) results for multiplicity densities dN/dy, average transverse momenta (pT), and particle ratios are presented. The chemical and kinetic freeze-out dynamics at these energies are discussed and presented as a function of collision centrality and energy. These results constitute the systematic measurements of bulk properties of matter formed in heavy-ion collisions over a broad range of energy (or baryon chemical potential) at RHIC.

451 citations


Journal ArticleDOI
TL;DR: The current review utilizes the process model of emotion regulation as an organizing framework for examining the impact of sleep upon various aspects of emotional experiences and calls for experimental research designed to clearly explicate which points in the emotion regulation process appear most vulnerable to sleep loss.

Journal ArticleDOI
TL;DR: It is found that insufficient attention is no more a problem among MTurk samples than among other commonly used convenience or high-quality commercial samples, and that MTurK participants buy into interactive experiments and trust researchers as much as participants in laboratory studies.

Journal ArticleDOI
TL;DR: It is shown how normal operations of power networks can be statistically distinguished from the case under stealthy attacks, and two machine-learning-based techniques for stealthy attack detection are proposed.
Abstract: Aging power industries, together with the increase in demand from industrial and residential customers, are the main incentive for policy makers to define a road map to the next-generation power system called the smart grid. In the smart grid, the overall monitoring costs will be decreased, but at the same time, the risk of cyber attacks might be increased. Recently, a new type of attacks (called the stealth attack) has been introduced, which cannot be detected by the traditional bad data detection using state estimation. In this paper, we show how normal operations of power networks can be statistically distinguished from the case under stealthy attacks. We propose two machine-learning-based techniques for stealthy attack detection. The first method utilizes supervised learning over labeled data and trains a distributed support vector machine (SVM). The design of the distributed SVM is based on the alternating direction method of multipliers, which offers provable optimality and convergence rate. The second method requires no training data and detects the deviation in measurements. In both methods, principal component analysis is used to reduce the dimensionality of the data to be processed, which leads to lower computation complexities. The results of the proposed detection methods on IEEE standard test systems demonstrate the effectiveness of both schemes.

Journal ArticleDOI
TL;DR: The early developments in OCE, and the factors that led to the current acceleration, are described, with a strong emphasis on future prospects, which are exceptionally bright.
Abstract: Optical coherence elastography (OCE), as the use of OCT to perform elastography has come to be known, began in 1998, around ten years after the rest of the field of elastography – the use of imaging to deduce mechanical properties of tissues. After a slow start, the maturation of OCT technology in the early to mid 2000s has underpinned a recent acceleration in the field. With more than 20 papers published in 2015, and more than 25 in 2016, OCE is growing fast, but still small compared to the companion fields of cell mechanics research methods, and medical elastography. In this review, we describe the early developments in OCE, and the factors that led to the current acceleration. Much of our attention is on the key recent advances, with a strong emphasis on future prospects, which are exceptionally bright.

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a joint optimization framework for all the nodes, DSOs, and DSSs to achieve the optimal resource allocation schemes in a distributed fashion, where a Stackelberg game was formulated to analyze the pricing problem for the DSO and the resource allocation problem for DSS.
Abstract: Fog computing is a promising architecture to provide economical and low latency data services for future Internet of Things (IoT)-based network systems. Fog computing relies on a set of low-power fog nodes (FNs) that are located close to the end users to offload the services originally targeting at cloud data centers. In this paper, we consider a specific fog computing network consisting of a set of data service operators (DSOs) each of which controls a set of FNs to provide the required data service to a set of data service subscribers (DSSs). How to allocate the limited computing resources of FNs to all the DSSs to achieve an optimal and stable performance is an important problem. Therefore, we propose a joint optimization framework for all FNs, DSOs, and DSSs to achieve the optimal resource allocation schemes in a distributed fashion. In the framework, we first formulate a Stackelberg game to analyze the pricing problem for the DSOs as well as the resource allocation problem for the DSSs. Under the scenarios that the DSOs can know the expected amount of resource purchased by the DSSs, a many-to-many matching game is applied to investigate the pairing problem between DSOs and FNs. Finally, within the same DSO, we apply another layer of many-to-many matching between each of the paired FNs and serving DSSs to solve the FN-DSS pairing problem. Simulation results show that our proposed framework can significantly improve the performance of the IoT-based network systems.

Journal ArticleDOI
TL;DR: The FANET structure and its protocol architecture is surveyed, and a variety of distributed gateway-selection algorithms and cloud-based stability-control mechanisms are addressed, complemented by a range of open challenges.
Abstract: Unmanned aerial vehicles (UAVs) have been widely used in both military and civilian applications. However, the cooperation of small and mini drones in a network is capable of further improving the performance and the coverage area of UAVs. There are numerous new challenges to be solved before the widespread introduction of multi-UAV-based heterogeneous flying ad hoc networks (FANET), including the formulation of a stable network structure. Meanwhile, an efficient gateway-selection algorithm and management mechanism is required. However, the stability control of the hierarchical UAV network guarantees the efficient collaboration of the drones. In this article, we begin by surveying the FANET structure and its protocol architecture. Then, a variety of distributed gateway-selection algorithms and cloud-based stability-control mechanisms are addressed, complemented by a range of open challenges.

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate that by tuning the carrier scattering mechanism in n-type Mg3Sb2-based materials, it is possible to noticeably improve the Hall mobility, from ∼19 to ∼77 cm2 V−1 s−1, and hence substantially increase the power factor by a factor of 3.
Abstract: A high thermoelectric power factor not only enables a potentially high figure of merit ZT but also leads to a large output power density, and hence it is pivotal to find an effective route to improve the power factor. Previous reports on the manipulation of carrier scattering mechanisms (e.g. ionization scattering) were mainly focused on enhancing the Seebeck coefficient. In contrast, here we demonstrate that by tuning the carrier scattering mechanism in n-type Mg3Sb2-based materials, it is possible to noticeably improve the Hall mobility, from ∼19 to ∼77 cm2 V−1 s−1, and hence substantially increase the power factor by a factor of 3, from ∼5 to ∼15 μW cm−1 K−2. The enhancement in mobility is mainly due to the reason that ionization scattering has been converted into mixed scattering between ionization and acoustic phonon scattering, which less effectively scatters the carriers. The strategy of tuning the carrier scattering mechanism to improve the mobility should be widely applicable to various material systems for achieving better thermoelectric performance.

Journal ArticleDOI
TL;DR: A robust oxygen-evolving electrocatalyst consisting of ferrous metaphosphate on self-supported conductive nickel foam that is commercially available in large scale that satisfies the criteria for large-scale commercialization of water–alkali electrolyzers is reported.
Abstract: Commercial hydrogen production by electrocatalytic water splitting will benefit from the realization of more efficient and less expensive catalysts compared with noble metal catalysts, especially for the oxygen evolution reaction, which requires a current density of 500 mA/cm 2 at an overpotential below 300 mV with long-term stability. Here we report a robust oxygen-evolving electrocatalyst consisting of ferrous metaphosphate on self-supported conductive nickel foam that is commercially available in large scale. We find that this catalyst, which may be associated with the in situ generated nickel–iron oxide/hydroxide and iron oxyhydroxide catalysts at the surface, yields current densities of 10 mA/cm 2 at an overpotential of 177 mV, 500 mA/cm 2 at only 265 mV, and 1,705 mA/cm 2 at 300 mV, with high durability in alkaline electrolyte of 1 M KOH even after 10,000 cycles, representing activity enhancement by a factor of 49 in boosting water oxidation at 300 mV relative to the state-of-the-art IrO 2 catalyst.

Journal ArticleDOI
TL;DR: A battery that reversibly intercalates magnesium monochloride cations with excellent rate and cycle performances in addition to the large capacity is shown.
Abstract: Magnesium rechargeable batteries potentially offer high-energy density, safety, and low cost due to the ability to employ divalent, dendrite-free, and earth-abundant magnesium metal anode. Despite recent progress, further development remains stagnated mainly due to the sluggish scission of magnesium-chloride bond and slow diffusion of divalent magnesium cations in cathodes. Here we report a battery chemistry that utilizes magnesium monochloride cations in expanded titanium disulfide. Combined theoretical modeling, spectroscopic analysis, and electrochemical study reveal fast diffusion kinetics of magnesium monochloride cations without scission of magnesium-chloride bond. The battery demonstrates the reversible intercalation of 1 and 1.7 magnesium monochloride cations per titanium at 25 and 60 °C, respectively, corresponding to up to 400 mAh g−1 capacity based on the mass of titanium disulfide. The large capacity accompanies with excellent rate and cycling performances even at room temperature, opening up possibilities for a variety of effective intercalation hosts for multivalent-ion batteries. Magnesium rechargeable batteries potentially offer high-energy density, safety, and low cost. Here the authors show a battery that reversibly intercalates magnesium monochloride cations with excellent rate and cycle performances in addition to the large capacity.

Journal ArticleDOI
TL;DR: It is concluded that gut dysbiosis can directly affect systolic blood pressure and Manipulation of the gut microbiota may represent an innovative treatment for hypertension.
Abstract: Gut dysbiosis has been linked to cardiovascular diseases including hypertension. We tested the hypothesis that hypertension could be induced in a normotensive strain of rats or attenuated in a hype...

Journal ArticleDOI
20 Mar 2017-Oncogene
TL;DR: The iron dependence of ovarian cancer TICs renders them exquisitely sensitive in vivo to agents that induce iron-dependent cell death (ferroptosis) as well as iron chelators, and thus creates a metabolic vulnerability that can be exploited therapeutically.
Abstract: Ovarian cancer is a lethal malignancy that has not seen a major therapeutic advance in over 30 years. We demonstrate that ovarian cancer exhibits a targetable alteration in iron metabolism. Ferroportin (FPN), the iron efflux pump, is decreased, and transferrin receptor (TFR1), the iron importer, is increased in tumor tissue from patients with high grade but not low grade serous ovarian cancer. A similar profile of decreased FPN and increased TFR1 is observed in a genetic model of ovarian cancer tumor-initiating cells (TICs). The net result of these changes is an accumulation of excess intracellular iron and an augmented dependence on iron for proliferation. A forced reduction in intracellular iron reduces the proliferation of ovarian cancer TICs in vitro, and inhibits both tumor growth and intraperitoneal dissemination of tumor cells in vivo. Mechanistic studies demonstrate that iron increases metastatic spread by facilitating invasion through expression of matrix metalloproteases and synthesis of interleukin 6 (IL-6). We show that the iron dependence of ovarian cancer TICs renders them exquisitely sensitive in vivo to agents that induce iron-dependent cell death (ferroptosis) as well as iron chelators, and thus creates a metabolic vulnerability that can be exploited therapeutically.

Journal ArticleDOI
TL;DR: Overall, sex, gender and hormones play a major role in the regulation of ocular surface and adnexal tissues, and in the difference in DED prevalence between women and men.
Abstract: One of the most compelling features of dry eye disease (DED) is that it occurs more frequently in women than men. In fact, the female sex is a significant risk factor for the development of DED. This sex-related difference in DED prevalence is attributed in large part to the effects of sex steroids (e.g. androgens, estrogens), hypothalamic-pituitary hormones, glucocorticoids, insulin, insulin-like growth factor 1 and thyroid hormones, as well as to the sex chromosome complement, sex-specific autosomal factors and epigenetics (e.g. microRNAs). In addition to sex, gender also appears to be a risk factor for DED. "Gender" and "sex" are words that are often used interchangeably, but they have distinct meanings. "Gender" refers to a person's self-representation as a man or woman, whereas "sex" distinguishes males and females based on their biological characteristics. Both gender and sex affect DED risk, presentation of the disease, immune responses, pain, care-seeking behaviors, service utilization, and myriad other facets of eye health. Overall, sex, gender and hormones play a major role in the regulation of ocular surface and adnexal tissues, and in the difference in DED prevalence between women and men. The purpose of this Subcommittee report is to review and critique the nature of this role, as well as to recommend areas for future research to advance our understanding of the interrelationships between sex, gender, hormones and DED.

Book ChapterDOI
Lin Chen1, Lei Xu1, Nolan Shah1, Zhimin Gao1, Yang Lu1, Weidong Shi1 
05 Nov 2017
TL;DR: A theoretical framework for evaluating a PoET based blockchain system is developed, and it is shown that the current design is vulnerable in the sense that adversary can jeopardize the blockchain system by only compromising \(\varTheta (\log \log n/\log n)\) fraction of the participating nodes.
Abstract: As more applications are built on top of blockchain and public ledger, different approaches are developed to improve the performance of blockchain construction. Recently Intel proposed a new concept of proof-of-elapsed-time (PoET), which leverages trusted computing to enforce random waiting times for block construction. However, trusted computing component may not be perfect and 100% reliable. It is not clear, to what extent, blockchain systems based on PoET can tolerate failures of trusted computing component. The current design of PoET lacks rigorous security analysis and a theoretical foundation for assessing its strength against such attacks. To fulfill this gap, we develop a theoretical framework for evaluating a PoET based blockchain system, and show that the current design is vulnerable in the sense that adversary can jeopardize the blockchain system by only compromising \(\varTheta (\log \log n/\log n)\) fraction of the participating nodes, which is very small when n is relatively large. Based on our theoretical analysis, we also propose methods to mitigate these vulnerabilities.

Journal ArticleDOI
TL;DR: In this paper, the 2D layered CaAl 2 Si 2 -type Zintl phases are discussed in more detail, from fundamental crystal structure and electronic band structure to the approaches that have been successfully used to enhance the thermoelectric performance.

Journal ArticleDOI
TL;DR: Evidence of substantial increases in atmospheric ammonia (NH3) concentrations (14-year) over several of the worlds major agricultural regions is provided, using recently available retrievals from the Atmospheric Infrared Sounder (AIRS) aboard NASA's Aqua satellite.
Abstract: This study provides evidence of substantial increases in atmospheric ammonia (NH3) concentrations (14-year) over several of the worlds major agricultural regions, using recently available retrievals from the Atmospheric Infrared Sounder (AIRS) aboard NASA's Aqua satellite. The main sources of atmospheric NH3 are farming and animal husbandry involving reactive nitrogen ultimately derived from fertilizer use; rates of emission are also sensitive to climate change. Significant increasing trends are seen over the US (2.61% yr-1), the European Union (EU) (1.83% yr-1), and China (2.27% yr-1). Over the EU, the trend results from decreased scavenging by acid aerosols. Over the US, the increase results from a combination of decreased chemical loss and increased soil temperatures. Over China, decreased chemical loss, increasing temperatures, and increased fertilizer use all play a role. Over South Asia, increased NH3 emissions are masked by increased SO2 and NOx emissions, leading to increased aerosol loading and adverse health effects.

Proceedings ArticleDOI
21 Jul 2017
TL;DR: This work proposes a DNN-based approach for End-to-End 3D FAce Reconstruction (UH-E2FAR) from a single 2D image with a multi-task loss function and a fusion convolutional neural network (CNN) to improve facial expression reconstruction.
Abstract: Monocular 3D facial shape reconstruction from a single 2D facial image has been an active research area due to its wide applications. Inspired by the success of deep neural networks (DNN), we propose a DNN-based approach for End-to-End 3D FAce Reconstruction (UH-E2FAR) from a single 2D image. Different from recent works that reconstruct and refine the 3D face in an iterative manner using both an RGB image and an initial 3D facial shape rendering, our DNN model is end-to-end, and thus the complicated 3D rendering process can be avoided. Moreover, we integrate in the DNN architecture two components, namely a multi-task loss function and a fusion convolutional neural network (CNN) to improve facial expression reconstruction. With the multi-task loss function, 3D face reconstruction is divided into neutral 3D facial shape reconstruction and expressive 3D facial shape reconstruction. The neutral 3D facial shape is class-specific. Therefore, higher layer features are useful. In comparison, the expressive 3D facial shape favors lower or intermediate layer features. With the fusion-CNN, features from different intermediate layers are fused and transformed for predicting the 3D expressive facial shape. Through extensive experiments, we demonstrate the superiority of our end-to-end framework in improving the accuracy of 3D face reconstruction.

Journal ArticleDOI
TL;DR: In this paper, a hierarchical core-shell nano-architecture was proposed for efficient overall water splitting in the alkaline medium, which achieved a current density of 10mV.

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate that by manipulating the carrier scattering mechanism in n-type Mg3Sb2-based materials, a substantial improvement in carrier mobility, and hence the power factor, can be achieved.
Abstract: Achieving higher carrier mobility plays a pivotal role for obtaining potentially high thermoelectric performance. In principle, the carrier mobility is governed by the band structure as well as by the carrier scattering mechanism. Here, we demonstrate that by manipulating the carrier scattering mechanism in n-type Mg3Sb2-based materials, a substantial improvement in carrier mobility, and hence the power factor, can be achieved. In this work, Fe, Co, Hf, and Ta are doped on the Mg site of Mg3.2Sb1.5Bi0.49Te0.01, where the ionized impurity scattering crosses over to mixed ionized impurity and acoustic phonon scattering. A significant improvement in Hall mobility from ∼16 to ∼81 cm2⋅V-1⋅s-1 is obtained, thus leading to a notably enhanced power factor of ∼13 μW⋅cm-1⋅K-2 from ∼5 μW⋅cm-1⋅K-2 A simultaneous reduction in thermal conductivity is also achieved. Collectively, a figure of merit (ZT) of ∼1.7 is obtained at 773 K in Mg3.1Co0.1Sb1.5Bi0.49Te0.01 The concept of manipulating the carrier scattering mechanism to improve the mobility should also be applicable to other material systems.

Journal ArticleDOI
TL;DR: A safe and low‐cost aqueous Ca‐ion battery based on a highly reversible polyimide anode and a high‐potential open framework copper hexacyanoferrate cathode is demonstrated, which shows a stable capacity and high efficiency at both high and low current rates.
Abstract: Multivalent-ion batteries are emerging as low-cost, high energy density, and safe alternatives to Li-ion batteries but are challenged by slow cation diffusion in electrode materials due to the high polarization strength of Mg- and Al-ions. In contrast, Ca-ion has a low polarization strength similar to that of Li-ion, therefore a Ca-ion battery will share the advantages while avoiding the kinetics issues related to multivalent batteries. However, there is no battery known that utilizes the Ca-ion chemistry due to the limited success in Ca-ion storage materials. Here, a safe and low-cost aqueous Ca-ion battery based on a highly reversible polyimide anode and a high-potential open framework copper hexacyanoferrate cathode is demonstrated. The prototype cell shows a stable capacity and high efficiency at both high and low current rates, with an 88% capacity retention and an average 99% coloumbic efficiency after cycling at 10C for 1000 cycles. The Ca-ion storage mechanism for both electrodes as well as the origin of the fast kinetics have been investigated. Additional comparison with a Mg-ion cell with identical electrodes reveals clear kinetics advantages for the Ca-ion system, which is explained by the smaller ionic radii and more facile desolvation of hydrated Ca-ions.

Journal ArticleDOI
TL;DR: The weight of empirical evidence has led the DSM-5 and the UK and Australian national treatment guidelines to “legitimize” the diagnosis of BPD prior to age 18 and the “first wave” of evidence-based treatments has demonstrated that structured treatments for BPD in young people are effective.