scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Experimental Medicine in 2014"


Journal ArticleDOI
TL;DR: Hypoxia selectively up-regulates PD-L1 on myeloid-derived suppressor cells via HIF-1a, thus affecting T cell activation.
Abstract: Tumor-infiltrating myeloid cells such as myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) form an important component of the hypoxic tumor microenvironment. Here, we investigated the influence of hypoxia on immune checkpoint receptors (programmed death [PD]-1 and CTLA-4) and their respective ligands (PD-1 ligand 1 [PD-L1], PD-L2, CD80, and CD86) on MDSCs. We demonstrate that MDSCs at the tumor site show a differential expression of PD-L1 as compared with MDSCs from peripheral lymphoid organ (spleen). Hypoxia caused a rapid, dramatic, and selective up-regulation of PD-L1 on splenic MDSCs in tumor-bearing mice. This was not limited to MDSCs, as hypoxia also significantly increased the expression of PD-L1 on macrophages, dendritic cells, and tumor cells. Furthermore, PD-L1 up-regulation under hypoxia was dependent on hypoxia-inducible factor-1α (HIF-1α) but not HIF-2α. Chromatin immunoprecipitation and luciferase reporter assay revealed direct binding of HIF-1α to a transcriptionally active hypoxia-response element (HRE) in the PD-L1 proximal promoter. Blockade of PD-L1 under hypoxia enhanced MDSC-mediated T cell activation and was accompanied by the down-regulation of MDSCs IL-6 and IL-10. Finally, neutralizing antibodies against IL-10 under hypoxia significantly abrogated the suppressive activity of MDSCs. Simultaneous blockade of PD-L1 along with inhibition of HIF-1α may thus represent a novel approach for cancer immunotherapy.

1,460 citations


Journal ArticleDOI
TL;DR: Phagocytic monocyte-derived macrophages associate with the nodes of Ranvier and initiate demyelination while microglia clear debris and display a suppressed metabolic gene signature in EAE.
Abstract: In the human disorder multiple sclerosis (MS) and in the model experimental autoimmune encephalomyelitis (EAE), macrophages predominate in demyelinated areas and their numbers correlate to tissue damage. Macrophages may be derived from infiltrating monocytes or resident microglia, yet are indistinguishable by light microscopy and surface phenotype. It is axiomatic that T cell–mediated macrophage activation is critical for inflammatory demyelination in EAE, yet the precise details by which tissue injury takes place remain poorly understood. In the present study, we addressed the cellular basis of autoimmune demyelination by discriminating microglial versus monocyte origins of effector macrophages. Using serial block-face scanning electron microscopy (SBF-SEM), we show that monocyte-derived macrophages associate with nodes of Ranvier and initiate demyelination, whereas microglia appear to clear debris. Gene expression profiles confirm that monocyte-derived macrophages are highly phagocytic and inflammatory, whereas those arising from microglia demonstrate an unexpected signature of globally suppressed cellular metabolism at disease onset. Distinguishing tissue-resident macrophages from infiltrating monocytes will point toward new strategies to treat disease and promote repair in diverse inflammatory pathologies in varied organs.

667 citations


Journal ArticleDOI
TL;DR: A comprehensive review on the fundamental role of cancer-associated fibroblasts in shaping the tumor microenvironment and promoting tumor initiation and progression is provided.
Abstract: Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.

646 citations


Journal ArticleDOI
TL;DR: Mutually exclusive expression of T-bet and Eomes drives the development of distinct NK cell lineages with complementary functions.
Abstract: Trail+DX5−Eomes− natural killer (NK) cells arise in the mouse fetal liver and persist in the adult liver. Their relationships with Trail−DX5+ NK cells remain controversial. We generated a novel Eomes-GFP reporter murine model to address this question. We found that Eomes− NK cells are not precursors of classical Eomes+ NK cells but rather constitute a distinct lineage of innate lymphoid cells. Eomes− NK cells are strictly dependent on both T-bet and IL-15, similarly to NKT cells. We observed that, in the liver, expression of T-bet in progenitors represses Eomes expression and the development of Eomes+ NK cells. Reciprocally, the bone marrow (BM) microenvironment restricts T-bet expression in developing NK cells. Ectopic expression of T-bet forces the development of Eomes− NK cells, demonstrating that repression of T-bet is essential for the development of Eomes+ NK cells. Gene profile analyses show that Eomes− NK cells share part of their transcriptional program with NKT cells, including genes involved in liver homing and NK cell receptors. Moreover, Eomes− NK cells produce a broad range of cytokines, including IL-2 and TNF in vitro and in vivo, during immune responses against vaccinia virus. Thus, mutually exclusive expression of T-bet and Eomes drives the development of different NK cell lineages with complementary functions.

445 citations


Journal ArticleDOI
TL;DR: Neuronal activity promotes the release of extracellular tau in vivo and cell reprograming acts as a “spatially aggregating force” to reduce the chance of cell death in mice.
Abstract: Tau is primarily a cytoplasmic protein that stabilizes microtubules. However, it is also found in the extracellular space of the brain at appreciable concentrations. Although its presence there may be relevant to the intercellular spread of tau pathology, the cellular mechanisms regulating tau release into the extracellular space are not well understood. To test this in the context of neuronal networks in vivo, we used in vivo microdialysis. Increasing neuronal activity rapidly increased the steady-state levels of extracellular tau in vivo. Importantly, presynaptic glutamate release is sufficient to drive tau release. Although tau release occurred within hours in response to neuronal activity, the elimination rate of tau from the extracellular compartment and the brain is slow (half-life of ∼11 d). The in vivo results provide one mechanism underlying neuronal tau release and may link trans-synaptic spread of tau pathology with synaptic activity itself.

432 citations


Journal ArticleDOI
TL;DR: Inflammatory T helper 17 cells in humans are distinguished by selective expression of MDR1 and are enriched in the gut of patients with Crohn’s disease.
Abstract: IL-17A–expressing CD4+ T cells (Th17 cells) are generally regarded as key effectors of autoimmune inflammation. However, not all Th17 cells are pro-inflammatory. Pathogenic Th17 cells that induce autoimmunity in mice are distinguished from nonpathogenic Th17 cells by a unique transcriptional signature, including high Il23r expression, and these cells require Il23r for their inflammatory function. In contrast, defining features of human pro-inflammatory Th17 cells are unknown. We show that pro-inflammatory human Th17 cells are restricted to a subset of CCR6+CXCR3hiCCR4loCCR10−CD161+ cells that transiently express c-Kit and stably express P-glycoprotein (P-gp)/multi-drug resistance type 1 (MDR1). In contrast to MDR1− Th1 or Th17 cells, MDR1+ Th17 cells produce both Th17 (IL-17A, IL-17F, and IL-22) and Th1 (IFN-γ) cytokines upon TCR stimulation and do not express IL-10 or other anti-inflammatory molecules. These cells also display a transcriptional signature akin to pathogenic mouse Th17 cells and show heightened functional responses to IL-23 stimulation. In vivo, MDR1+ Th17 cells are enriched and activated in the gut of Crohn’s disease patients. Furthermore, MDR1+ Th17 cells are refractory to several glucocorticoids used to treat clinical autoimmune disease. Thus, MDR1+ Th17 cells may be important mediators of chronic inflammation, particularly in clinical settings of steroid resistant inflammatory disease.

379 citations


Journal ArticleDOI
TL;DR: Over time, the heart is progressively reconstituted with bone marrow–derived macrophages, even in the absence of inflammation.
Abstract: Cardiac macrophages (cMΦ) are critical for early postnatal heart regeneration and fibrotic repair in the adult heart, but their origins and cellular dynamics during postnatal development have not been well characterized. Tissue macrophages can be derived from embryonic progenitors or from monocytes during inflammation. We report that within the first weeks after birth, the embryo-derived population of resident CX3CR1+ cMΦ diversifies into MHCII+ and MHCII− cells. Genetic fate mapping demonstrated that cMΦ derived from CX3CR1+ embryonic progenitors persisted into adulthood but the initially high contribution to resident cMΦ declined after birth. Consistent with this, the early significant proliferation rate of resident cMΦ decreased with age upon diversification into subpopulations. Bone marrow (BM) reconstitution experiments showed monocyte-dependent quantitative replacement of all cMΦ populations. Furthermore, parabiotic mice and BM chimeras of nonirradiated recipient mice revealed a slow but significant donor contribution to cMΦ. Together, our observations indicate that in the heart, embryo-derived cMΦ show declining self-renewal with age and are progressively substituted by monocyte-derived macrophages, even in the absence of inflammation.

369 citations


Journal ArticleDOI
TL;DR: Wang et al. examine how influenza A virus causes GI symptoms in mice via virally activated CD4 T cells in the lung up-regulating CCR9 and migrating to the intestine where they secrete IFN-γ that alters homeostasis of the microbiota.
Abstract: Influenza in humans is often accompanied by gastroenteritis-like symptoms such as diarrhea, but the underlying mechanism is not yet understood. We explored the occurrence of gastroenteritis-like symptoms using a mouse model of respiratory influenza infection. We found that respiratory influenza infection caused intestinal injury when lung injury occurred, which was not due to direct intestinal viral infection. Influenza infection altered the intestinal microbiota composition, which was mediated by IFN-γ produced by lung-derived CCR9+CD4+ T cells recruited into the small intestine. Th17 cells markedly increased in the small intestine after PR8 infection, and neutralizing IL-17A reduced intestinal injury. Moreover, antibiotic depletion of intestinal microbiota reduced IL-17A production and attenuated influenza-caused intestinal injury. Further study showed that the alteration of intestinal microbiota significantly stimulated IL-15 production from intestinal epithelial cells, which subsequently promoted Th17 cell polarization in the small intestine in situ. Thus, our findings provide new insights into an undescribed mechanism by which respiratory influenza infection causes intestinal disease.

330 citations


Journal ArticleDOI
TL;DR: CD44loCD62Lhi regulatory T cells preferentially access IL-2 in T cell zones due to expression of CCR7 and this finding is consistent with previous work on T cell reprograming and “cell reprogramment”.
Abstract: Immune tolerance and activation depend on precise control over the number and function of immunosuppressive Foxp3+ regulatory T (T reg) cells, and the importance of IL-2 in maintaining tolerance and preventing autoimmunity is clear. However, the homeostatic requirement for IL-2 among specific populations of peripheral T reg cells remains poorly understood. We show that IL-2 selectively maintains a population of quiescent CD44loCD62Lhi T reg cells that gain access to paracrine IL-2 produced in the T cell zones of secondary lymphoid tissues due to their expression of the chemokine receptor CCR7. In contrast, CD44hiCD62LloCCR7lo T reg cells that populate nonlymphoid tissues do not access IL-2–prevalent regions in vivo and are insensitive to IL-2 blockade; instead, their maintenance depends on continued signaling through the co-stimulatory receptor ICOS (inducible co-stimulator). Thus, we define a fundamental homeostatic subdivision in T reg cell populations based on their localization and provide an integrated framework for understanding how T reg cell abundance and function are controlled by unique signals in different tissue environments.

324 citations


Journal ArticleDOI
TL;DR: A new and improved way to predict immunoprotective cancer neoepitopes based in part on the difference in MHC-binding scores between the mutant epitope and its wild-type counterpart is defined.
Abstract: The mutational repertoire of cancers creates the neoepitopes that make cancers immunogenic. Here, we introduce two novel tools that identify, with relatively high accuracy, the small proportion of neoepitopes (among the hundreds of potential neoepitopes) that protect the host through an antitumor T cell response. The two tools consist of (a) the numerical difference in NetMHC scores between the mutated sequences and their unmutated counterparts, termed the differential agretopic index, and (b) the conformational stability of the MHC I–peptide interaction. Mechanistically, these tools identify neoepitopes that are mutated to create new anchor residues for MHC binding, and render the overall peptide more rigid. Surprisingly, the protective neoepitopes identified here elicit CD8-dependent immunity, even though their affinity for Kd is orders of magnitude lower than the 500-nM threshold considered reasonable for such interactions. These results greatly expand the universe of target cancer antigens and identify new tools for human cancer immunotherapy.

309 citations


Journal ArticleDOI
TL;DR: BRAF-V600E expression is identified in hematopoietic progenitor and precursor myeloid dendritic cells in patients with high-risk LCH, and enforced expression of BRAF- V600E in CD11c+ cells recapitulates a high- risk LCH-like phenotype in mice.
Abstract: Langerhans cell histiocytosis (LCH) is a clonal disorder with elusive etiology, characterized by the accumulation of CD207(+) dendritic cells (DCs) in inflammatory lesions. Recurrent BRAF-V600E mutations have been reported in LCH. In this study, lesions from 100 patients were genotyped, and 64% carried the BRAF-V600E mutation within infiltrating CD207(+) DCs. BRAF-V600E expression in tissue DCs did not define specific clinical risk groups but was associated with increased risk of recurrence. Strikingly, we found that patients with active, high-risk LCH also carried BRAF-V600E in circulating CD11c(+) and CD14(+) fractions and in bone marrow (BM) CD34(+) hematopoietic cell progenitors, whereas the mutation was restricted to lesional CD207(+) DC in low-risk LCH patients. Importantly, BRAF-V600E expression in DCs was sufficient to drive LCH-like disease in mice. Consistent with our findings in humans, expression of BRAF-V600E in BM DC progenitors recapitulated many features of the human high-risk LCH, whereas BRAF-V600E expression in differentiated DCs more closely resembled low-risk LCH. We therefore propose classification of LCH as a myeloid neoplasia and hypothesize that high-risk LCH arises from somatic mutation of a hematopoietic progenitor, whereas low-risk disease arises from somatic mutation of tissue-restricted precursor DCs.

Journal ArticleDOI
TL;DR: Intestinal CX3CR1+ mononuclear phagocytes regulate ILC3 in vivo in response to colitis associated microbial signals.
Abstract: Interleukin (IL)-22–producing group 3 innate lymphoid cells (ILC3) promote mucosal healing and maintain barrier integrity, but how microbial signals are integrated to regulate mucosal protection offered by these cells remains unclear. Here, we show that in vivo depletion of CX3CR1+ mononuclear phagocytes (MNPs) resulted in more severe colitis and death after infection with Citrobacter rodentium. This phenotype was rescued by exogenous IL-22, which was endogenously produced by ILC3 in close spatial proximity to CX3CR1+ MNPs that were dependent on MyD88 signaling. CX3CR1+ MNPs from both mouse and human tissue produced more IL-23 and IL-1β than conventional CD103+ dendritic cells (cDCs) and were more efficient than cDCs in supporting IL-22 production in ILC3 in vitro and in vivo. Further, colonic ILC3 from patients with mild to moderate ulcerative colitis or Crohn’s disease had increased IL-22 production. IBD-associated SNP gene set analysis revealed enrichment for genes selectively expressed in human intestinal MNPs. The product of one of these, TL1A, potently enhanced IL-23– and IL-1β-induced production of IL-22 and GM-CSF by ILC3. Collectively, these results reveal a critical role for CX3CR1+ mononuclear phagocytes in integrating microbial signals to regulate colonic ILC3 function in IBD.

Journal ArticleDOI
TL;DR: Five potent and broadly anti-HIV neutralizing monoclonal antibodies are able to block infection by two different SHIVs in monkeys and it is determined that titers of roughly 1:100 protected half the animals.
Abstract: It is widely appreciated that effective human vaccines directed against viral pathogens elicit neutralizing antibodies (NAbs). The passive transfer of anti–HIV-1 NAbs conferring sterilizing immunity to macaques has been used to determine the plasma neutralization titers, which must be present at the time of exposure, to prevent acquisition of SIV/HIV chimeric virus (SHIV) infections. We administered five recently isolated potent and broadly acting anti-HIV neutralizing monoclonal antibodies (mAbs) to rhesus macaques and challenged them intrarectally 24 h later with either of two different R5-tropic SHIVs. By combining the results obtained from 60 challenged animals, we determined that the protective neutralization titer in plasma preventing virus infection in 50% of the exposed monkeys was relatively modest (∼1:100) and potentially achievable by vaccination.

Journal ArticleDOI
TL;DR: Abnormal maternal inflammation leads to TNF-mediated fetal growth restriction and some features of preeclampsia that can be ameliorated with the nitric oxide mimetic nitroglycerin.
Abstract: Fetal growth restriction (FGR) and preeclampsia (PE) are often associated with abnormal maternal inflammation, deficient spiral artery (SA) remodeling, and altered uteroplacental perfusion. Here, we provide evidence of a novel mechanistic link between abnormal maternal inflammation and the development of FGR with features of PE. Using a model in which pregnant rats are administered low-dose lipopolysaccharide (LPS) on gestational days 13.5–16.5, we show that abnormal inflammation resulted in FGR mediated by tumor necrosis factor-α (TNF). Inflammation was also associated with deficient trophoblast invasion and SA remodeling, as well as with altered uteroplacental hemodynamics and placental nitrosative stress. Moreover, inflammation increased maternal mean arterial pressure (MAP) and was associated with renal structural alterations and proteinuria characteristic of PE. Finally, transdermal administration of the nitric oxide (NO) mimetic glyceryl trinitrate prevented altered uteroplacental perfusion, LPS-induced inflammation, placental nitrosative stress, renal structural and functional alterations, increase in MAP, and FGR. These findings demonstrate that maternal inflammation can lead to severe pregnancy complications via a mechanism that involves increased maternal levels of TNF. Our study provides a rationale for the use of antiinflammatory agents or NO-mimetics in the treatment and/or prevention of inflammation-associated pregnancy complications.

Journal ArticleDOI
TL;DR: High-affinity transferrin receptor bispecific antibodies facilitate trafficking of TFR to lysosomes and induce TfR degradation to decrease the ability of T fR to mediate BBB transcytosis.
Abstract: Antibodies to transferrin receptor (TfR) have potential use for therapeutic entry into the brain. We have shown that bispecific antibodies against TfR and β-secretase (BACE1 [β-amyloid cleaving enzyme-1]) traverse the blood–brain barrier (BBB) and effectively reduce brain amyloid β levels. We found that optimizing anti-TfR affinity improves brain exposure and BACE1 inhibition. Here we probe the cellular basis of this improvement and explore whether TfR antibody affinity alters the intracellular trafficking of TfR. Comparing high- and low-affinity TfR bispecific antibodies in vivo, we found that high-affinity binding to TfR caused a dose-dependent reduction of brain TfR levels. In vitro live imaging and colocalization experiments revealed that high-affinity TfR bispecific antibodies facilitated the trafficking of TfR to lysosomes and thus induced the degradation of TfR, an observation which was further confirmed in vivo. Importantly, high-affinity anti-TfR dosing induced reductions in brain TfR levels, which significantly decreased brain exposure to a second dose of low-affinity anti-TfR bispecific. Thus, high-affinity anti-TfR alters TfR trafficking, which dramatically impacts the capacity for TfR to mediate BBB transcytosis.

Journal ArticleDOI
TL;DR: CTLA-4 blockade leads to enhanced activation of tumor-reactive T cells with concomitant up-regulation of ICOS, thus enabling their responses to be enhanced by ICOS engagement.
Abstract: Cytotoxic T lymphocyte antigen-4 (CTLA-4) blockade with a monoclonal antibody yields durable responses in a subset of cancer patients and has been approved by the FDA as a standard therapy for late-stage melanoma. We recently identified inducible co-stimulator (ICOS) as a crucial player in the antitumor effects of CTLA-4 blockade. We now show that concomitant CTLA-4 blockade and ICOS engagement by tumor cell vaccines engineered to express ICOS ligand enhanced antitumor immune responses in both quantity and quality and significantly improved rejection of established melanoma and prostate cancer in mice. This study provides strong support for the development of combinatorial therapies incorporating anti–CTLA-4 and ICOS engagement.

Journal ArticleDOI
TL;DR: Transient, genetic elimination of a specialized group of cells called plasmacytoid dendritic cells (pDCs) reverses many features of lupus in mice.
Abstract: Plasmacytoid dendritic cells (pDCs) have long been implicated in the pathogenesis of lupus. However, this conclusion has been largely based on a correlative link between the copious production of IFN-α/β by pDCs and the IFN-α/β “signature” often seen in human lupus patients. The specific contribution of pDCs to disease in vivo has not been investigated in detail. For this reason, we generated a strain of BXSB lupus-prone mice in which pDCs can be selectively depleted in vivo. Early, transient ablation of pDCs before disease initiation resulted in reduced splenomegaly and lymphadenopathy, impaired expansion and activation of T and B cells, reduced antibodies against nuclear autoantigens and improved kidney pathology. Amelioration of pathology coincided with decreased transcription of IFN-α/β–induced genes in tissues. PDC depletion had an immediate impact on the activation of immune cells, and importantly, the beneficial effects on pathology were sustained even though pDCs later recovered, indicating an early pDC contribution to disease. Together, our findings demonstrate a critical function for pDCs during the IFN-α/β–dependent initiation of autoimmune lupus and point to pDCs as an attractive therapeutic target for the treatment of SLE.

Journal ArticleDOI
TL;DR: Quiescence acts as a safeguard mechanism to ensure survival of the HSC pool during chronic IFN-1 exposure.
Abstract: Type I interferons (IFN-1s) are antiviral cytokines that suppress blood production while paradoxically inducing hematopoietic stem cell (HSC) proliferation. Here, we clarify the relationship between the proliferative and suppressive effects of IFN-1s on HSC function during acute and chronic IFN-1 exposure. We show that IFN-1–driven HSC proliferation is a transient event resulting from a brief relaxation of quiescence-enforcing mechanisms in response to acute IFN-1 exposure, which occurs exclusively in vivo. We find that this proliferative burst fails to exhaust the HSC pool, which rapidly returns to quiescence in response to chronic IFN-1 exposure. Moreover, we demonstrate that IFN-1–exposed HSCs with reestablished quiescence are largely protected from the killing effects of IFNs unless forced back into the cell cycle due to culture, transplantation, or myeloablative treatment, at which point they activate a p53-dependent proapoptotic gene program. Collectively, our results demonstrate that quiescence acts as a safeguard mechanism to ensure survival of the HSC pool during chronic IFN-1 exposure. We show that IFN-1s can poise HSCs for apoptosis but induce direct cell killing only upon active proliferation, thereby establishing a mechanism for the suppressive effects of IFN-1s on HSC function.

Journal ArticleDOI
TL;DR: Interaction between the inhibitory molecule PD-L2 on dendritic cells and repulsive guidance molecule b (RGMb) on lung macrophages is required to establish respiratory tolerance.
Abstract: We report that programmed death ligand 2 (PD-L2), a known ligand of PD-1, also binds to repulsive guidance molecule b (RGMb), which was originally identified in the nervous system as a co-receptor for bone morphogenetic proteins (BMPs). PD-L2 and BMP-2/4 bind to distinct sites on RGMb. Normal resting lung interstitial macrophages and alveolar epithelial cells express high levels of RGMb mRNA, whereas lung dendritic cells express PD-L2. Blockade of the RGMb–PD-L2 interaction markedly impaired the development of respiratory tolerance by interfering with the initial T cell expansion required for respiratory tolerance. Experiments with PD-L2–deficient mice showed that PD-L2 expression on non–T cells was critical for respiratory tolerance, but expression on T cells was not required. Because PD-L2 binds to both PD-1, which inhibits antitumor immunity, and to RGMb, which regulates respiratory immunity, targeting the PD-L2 pathway has therapeutic potential for asthma, cancer, and other immune-mediated disorders. Understanding this pathway may provide insights into how to optimally modulate the PD-1 pathway in cancer immunotherapy while minimizing adverse events.

Journal ArticleDOI
TL;DR: It is shown that the mutant protein increases Nlrc4 oligomerization and is associated with increased IL-1β and Transgenic mice with the same NLRC4 mutation are shown to develop a similar FCAS-like syndrome.
Abstract: Autoinflammatory syndromes cause sterile inflammation in the absence of any signs of autoimmune responses. Familial cold autoinflammatory syndrome (FCAS) is characterized by intermittent episodes of rash, arthralgia, and fever after exposure to cold stimuli. We have identified a missense mutation in the NLRC4 gene in patients with FCAS. NLRC4 has been known as a crucial sensor for several Gram-negative intracellular bacteria. The mutation in NLRC4 in FCAS patients promoted the formation of NLRC4-containing inflammasomes that cleave procaspase-1 and increase production of IL-1β. Transgenic mice that expressed mutant Nlrc4 under the invariant chain promoter developed dermatitis and arthritis. Inflammation within tissues depended on IL-1β–mediated production of IL-17A from neutrophils but not from T cells. Our findings reveal a previously unrecognized link between NLRC4 and a hereditary autoinflammatory disease and highlight the importance of NLRC4 not only in the innate immune response to bacterial infections but also in the genesis of inflammatory diseases.

Journal ArticleDOI
TL;DR: A novel MAIT cell antagonist, Ac-6-FP, stabilizes MR1 and can inhibitMAIT cell activation with the flexible TCR β-chain serving to fine-tune the affinity of the TCR for antigen-MR1 complexes.
Abstract: Mucosal-associated invariant T (MAIT) cells express an invariant T cell receptor (TCR) α-chain (TRAV1-2 joined to TRAJ33, TRAJ20, or TRAJ12 in humans), which pairs with an array of TCR β-chains. MAIT TCRs can bind folate- and riboflavin-based metabolites restricted by the major histocompatibility complex (MHC)-related class I−like molecule, MR1. However, the impact of MAIT TCR and MR1-ligand heterogeneity on MAIT cell biology is unclear. We show how a previously uncharacterized MR1 ligand, acetyl-6-formylpterin (Ac-6-FP), markedly stabilized MR1, potently up-regulated MR1 cell surface expression, and inhibited MAIT cell activation. These enhanced properties of Ac-6-FP were attributable to structural alterations in MR1 that subsequently affected MAIT TCR recognition via conformational changes within the complementarity-determining region (CDR) 3β loop. Analysis of seven TRBV6-1+ MAIT TCRs demonstrated how CDR3β hypervariability impacted on MAIT TCR recognition by altering TCR flexibility and contacts with MR1 and the Ag itself. Ternary structures of TRBV6-1, TRBV6-4, and TRBV20+ MAIT TCRs in complex with MR1 bound to a potent riboflavin-based antigen (Ag) showed how variations in TRBV gene usage exclusively impacted on MR1 contacts within a consensus MAIT TCR-MR1 footprint. Moreover, differential TRAJ gene usage was readily accommodated within a conserved MAIT TCR-MR1-Ag docking mode. Collectively, MAIT TCR heterogeneity can fine-tune MR1 recognition in an Ag-dependent manner, thereby modulating MAIT cell recognition.

Journal ArticleDOI
TL;DR: Nfil3 is critical for normal development of innate lymphoid cell (ILC) progenitors and Nfil3-deficient mice have severely reduced lung and visceral adipose tissue ILC2s and gut-associated ILC3s, and compromised innate immunity to acute bacterial infection.
Abstract: The bZIP transcription factor Nfil3 (also known as E4BP4) is required for the development of natural killer (NK) cells and type 1 innate lymphoid cells (ILC1s). We find that Nfil3 plays a critical role in the development of other mucosal tissue-associated innate lymphocytes. Type 3 ILCs (ILC3s), including lymphoid tissue inducer (LTi)-like cells, are severely diminished in both numbers and function in Nfil3-deficient mice. Using mixed bone marrow chimeric mice, we demonstrate that Nfil3 is critical for normal development of gut-associated ILC3s in a cell-intrinsic manner. Furthermore, Nfil3 deficiency severely compromises intestinal innate immune defense against acute bacterial infection with Citrobacter rodentium and Clostridium difficile. Nfil3 deficiency resulted in a loss of the recently identified ILC precursor, yet conditional ablation of Nfil3 in the NKp46(+) ILC3 subset did not perturb ILC3 numbers, suggesting that Nfil3 is required early during ILC3 development but not for lineage maintenance. Lastly, a marked defect in type 2 ILCs (ILC2s) was also observed in the lungs and visceral adipose tissue of Nfil3-deficient mice, revealing a general requirement for Nfil3 in the development of all ILC lineages.

Journal ArticleDOI
TL;DR: Using pharmacological activation and genetic ablation of β2-adrenergic receptors in mice, Nakai et al. show that β2ARs expressed on lymphocytes can regulate egress of these cells from lymph nodes, while altering the responsiveness of chemokine receptors CCR7 and CXCR4.
Abstract: Lymphocyte recirculation through secondary lymphoid organs is essential for immunosurveillance and lymphocyte effector functions. Here, we show that signals through β2-adrenergic receptors (β2ARs) expressed on lymphocytes are involved in the control of lymphocyte dynamics by altering the responsiveness of chemoattractant receptors. Agonist stimulation of lymphocyte β2ARs inhibited egress of lymphocytes from lymph nodes (LNs) and rapidly produced lymphopenia in mice. Physiological inputs from adrenergic nerves contributed to retention of lymphocytes within LNs and homeostasis of their distribution among lymphoid tissues. β2ARs physically interacted with CCR7 and CXCR4, chemokine receptors promoting lymphocyte retention in LNs. Activation of β2ARs enhanced retention-promoting signals through CCR7 and CXCR4, and consequently inhibited lymphocyte egress from LNs. In models of T cell–mediated inflammatory diseases, β2AR-mediated signals inhibited LN egress of antigen-primed T cells and reduced their recruitment into peripheral tissues. Thus, this study reveals a novel mechanism for controlling lymphocyte trafficking and provides additional insights into immune regulation by the nervous system.

Journal ArticleDOI
TL;DR: Human patients with immunodeficiency and lymphoproliferation with skewing of CD8+ T cells toward terminally differentiated and senescent effector cells that have shortened telomeres are identified.
Abstract: Class IA phosphatidylinositol 3-kinases (PI3K), which generate PIP3 as a signal for cell growth and proliferation, exist as an intracellular complex of a catalytic subunit bound to a regulatory subunit. We and others have previously reported that heterozygous mutations in PIK3CD encoding the p110δ catalytic PI3K subunit cause a unique disorder termed p110δ-activating mutations causing senescent T cells, lymphadenopathy, and immunodeficiency (PASLI) disease. We report four patients from three families with a similar disease who harbor a recently reported heterozygous splice site mutation in PIK3R1, which encodes the p85α, p55α, and p50α regulatory PI3K subunits. These patients suffer from recurrent sinopulmonary infections and lymphoproliferation, exhibit hyperactive PI3K signaling, and have prominent expansion and skewing of peripheral blood CD8(+) T cells toward terminally differentiated senescent effector cells with short telomeres. The PIK3R1 splice site mutation causes skipping of an exon, corresponding to loss of amino acid residues 434-475 in the inter-SH2 domain. The mutant p85α protein is expressed at low levels in patient cells and activates PI3K signaling when overexpressed in T cells from healthy subjects due to qualitative and quantitative binding changes in the p85α-p110δ complex and failure of the C-terminal region to properly inhibit p110δ catalytic activity.

Journal ArticleDOI
TL;DR: The importance of single-patient genetic studies in the discovery of novel primary immunodeficiencies and insight into the standards and criteria that should accompany these studies are offered.
Abstract: Can genetic and clinical findings made in a single patient be considered sufficient to establish a causal relationship between genotype and phenotype? We report that up to 49 of the 232 monogenic etiologies (21%) of human primary immunodeficiencies (PIDs) were initially reported in single patients. The ability to incriminate single-gene inborn errors in immunodeficient patients results from the relative ease in validating the disease-causing role of the genotype by in-depth mechanistic studies demonstrating the structural and functional consequences of the mutations using blood samples. The candidate genotype can be causally connected to a clinical phenotype using cellular (leukocytes) or molecular (plasma) substrates. The recent advent of next generation sequencing (NGS), with whole exome and whole genome sequencing, induced pluripotent stem cell (iPSC) technology, and gene editing technologies—including in particular the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology—offer new and exciting possibilities for the genetic exploration of single patients not only in hematology and immunology but also in other fields. We propose three criteria for deciding if the clinical and experimental data suffice to establish a causal relationship based on only one case. The patient’s candidate genotype must not occur in individuals without the clinical phenotype. Experimental studies must indicate that the genetic variant impairs, destroys, or alters the expression or function of the gene product (or two genetic variants for compound heterozygosity). The causal relationship between the candidate genotype and the clinical phenotype must be confirmed via a relevant cellular phenotype, or by default via a relevant animal phenotype. When supported by satisfaction of rigorous criteria, the report of single patient–based discovery of Mendelian disorders should be encouraged, as it can provide the first step in the understanding of a group of human diseases, thereby revealing crucial pathways underlying physiological and pathological processes.

Journal ArticleDOI
TL;DR: IFN-γ directly triggers degranulation and death of Paneth cells, which do not respond to microbial stimulation in primary culture.
Abstract: Paneth cells (PCs) are terminally differentiated, highly specialized secretory cells located at the base of the crypts of Lieberkuhn in the small intestine. Besides their antimicrobial function, PCs serve as a component of the intestinal stem cell niche. By secreting granules containing bactericidal proteins like defensins/cryptdins and lysozyme, PCs regulate the microbiome of the gut. Here we study the control of PC degranulation in primary epithelial organoids in culture. We show that PC degranulation does not directly occur upon stimulation with microbial antigens or bacteria. In contrast, the pro-inflammatory cytokine Interferon gamma (IFN-γ) induces rapid and complete loss of granules. Using live cell imaging, we show that degranulation is coupled to luminal extrusion and death of PCs. Transfer of supernatants from in vitro stimulated iNKT cells recapitulates degranulation in an IFN-γ-dependent manner. Furthermore, endogenous IFN-γ secretion induced by anti-CD3 antibody injection causes Paneth loss and release of goblet cell mucus. The identification of IFN-γ as a trigger for degranulation and extrusion of PCs establishes a novel effector mechanism by which immune responses may regulate epithelial status and the gut microbiome.

Journal ArticleDOI
TL;DR: Independent of its known role in NF-κB transcription, the HOIL-1L containing LUBAC is required for assembly and activation of the NLRP3 inflammasome via linear ubiquitination of ASC.
Abstract: Linear ubiquitination is a newly discovered posttranslational modification that is currently restricted to a small number of known protein substrates. The linear ubiquitination assembly complex (LUBAC), consisting of HOIL-1L, HOIP, and Sharpin, has been reported to activate NF-κB-mediated transcription in response to receptor signaling by ligating linear ubiquitin chains to Nemo and Rip1. Despite recent advances, the detailed roles of LUBAC in immune cells remain elusive. We demonstrate a novel HOIL-1L function as an essential regulator of the activation of the NLRP3/ASC inflammasome in primary bone marrow-derived macrophages (BMDMs) independently of NF-κB activation. Mechanistically, HOIL-1L is required for assembly of the NLRP3/ASC inflammasome and the linear ubiquitination of ASC, which we identify as a novel LUBAC substrate. Consequently, we find that HOIL-1L(-/-) mice have reduced IL-1β secretion in response to in vivo NLRP3 stimulation and survive lethal challenge with LPS. Together, these data demonstrate that linear ubiquitination is required for NLRP3 inflammasome activation, defining the molecular events of NLRP3 inflammasome activation and expanding the role of LUBAC as an innate immune regulator. Furthermore, our observation is clinically relevant because patients lacking HOIL-1L expression suffer from pyogenic bacterial immunodeficiency, providing a potential new therapeutic target for enhancing inflammation in immunodeficient patients.

Journal ArticleDOI
TL;DR: Loss of Nfil3 selectively reduces Peyer’s patch formation, impairing recruitment and distribution of lymphocytes and compromising immune responses to inflammatory and infectious agents.
Abstract: Innate lymphoid cell (ILC) populations protect against infection and are essential for lymphoid tissue formation and tissue remodeling after damage. Nfil3 is implicated in the function of adaptive immune lineages and NK cell development, but it is not yet known if Nfil3 regulates other innate lymphoid lineages. Here, we identify that Nfil3 is essential for the development of Peyer’s patches and ILC2 and ILC3 subsets. Loss of Nfil3 selectively reduced Peyer’s patch formation and was accompanied by impaired recruitment and distribution of lymphocytes within the patches. ILC subsets exhibited high Nfil3 expression and genetic deletion of Nfil3 severely compromised the development of all subsets. Subsequently, Nfil3−/− mice were highly susceptible to disease when challenged with inflammatory or infectious agents. Thus, we demonstrate that Nfil3 is a key regulator of the development of ILC subsets essential for immune protection in the lung and gut.

Journal ArticleDOI
TL;DR: It is shown that IL-17 is produced by tongue-resident populations of γδ T cells and nTh17 cells in response to oropharyngeal candidiasis in mice.
Abstract: Oropharyngeal candidiasis (OPC) is an opportunistic fungal infection caused by Candida albicans. OPC is frequent in HIV/AIDS, implicating adaptive immunity. Mice are naive to Candida, yet IL-17 is induced within 24 h of infection, and susceptibility is strongly dependent on IL-17R signaling. We sought to identify the source of IL-17 during the early innate response to candidiasis. We show that innate responses to Candida require an intact TCR, as SCID, IL-7Rα(-/-), and Rag1(-/-) mice were susceptible to OPC, and blockade of TCR signaling by cyclosporine induced susceptibility. Using fate-tracking IL-17 reporter mice, we found that IL-17 is produced within 1-2 d by tongue-resident populations of γδ T cells and CD3(+)CD4(+)CD44(hi)TCRβ(+)CCR6(+) natural Th17 (nTh17) cells, but not by TCR-deficient innate lymphoid cells (ILCs) or NK cells. These cells function redundantly, as TCR-β(-/-) and TCR-δ(-/-) mice were both resistant to OPC. Whereas γδ T cells were previously shown to produce IL-17 during dermal candidiasis and are known to mediate host defense at mucosal surfaces, nTh17 cells are poorly understood. The oral nTh17 population expanded rapidly after OPC, exhibited high TCR-β clonal diversity, and was absent in Rag1(-/-), IL-7Rα(-/-), and germ-free mice. These findings indicate that nTh17 and γδ T cells, but not ILCs, are key mucosal sentinels that control oral pathogens.

Journal ArticleDOI
TL;DR: c-Kitlo HSCs exhibit enhanced self-renewal and long-term reconstitution potential and give rise to c-Kithi HSCS that have a megakaryocytic bias.
Abstract: Hematopoietic stem cells (HSCs) are heterogeneous with respect to their self-renewal, lineage, and reconstitution potentials. Although c-Kit is required for HSC function, gain and loss-of-function c-Kit mutants suggest that even small changes in c-Kit signaling profoundly affect HSC function. Herein, we demonstrate that even the most rigorously defined HSCs can be separated into functionally distinct subsets based on c-Kit activity. Functional and transcriptome studies show HSCs with low levels of surface c-Kit expression (c-Kitlo) and signaling exhibit enhanced self-renewal and long-term reconstitution potential compared with c-Kithi HSCs. Furthermore, c-Kitlo and c-Kithi HSCs are hierarchically organized, with c-Kithi HSCs arising from c-Kitlo HSCs. In addition, whereas c-Kithi HSCs give rise to long-term lymphomyeloid grafts, they exhibit an intrinsic megakaryocytic lineage bias. These functional differences between c-Kitlo and c-Kithi HSCs persist even under conditions of stress hematopoiesis induced by 5-fluorouracil. Finally, our studies show that the transition from c-Kitlo to c-Kithi HSC is negatively regulated by c-Cbl. Overall, these studies demonstrate that HSCs exhibiting enhanced self-renewal potential can be isolated based on c-Kit expression during both steady state and stress hematopoiesis. Moreover, they provide further evidence that the intrinsic functional heterogeneity previously described for HSCs extends to the megakaryocytic lineage.