scispace - formally typeset
Search or ask a question

Showing papers in "Stem cell reports in 2021"


Journal ArticleDOI
TL;DR: The International Society for Stem Cell Research (ISCR) as discussed by the authors updated its guidelines for stem cell research and clinical translation in order to address advances in stem cell science and other relevant fields, together with the associated ethical, social, and policy issues that have arisen since the last update in 2016.
Abstract: The International Society for Stem Cell Research has updated its Guidelines for Stem Cell Research and Clinical Translation in order to address advances in stem cell science and other relevant fields, together with the associated ethical, social, and policy issues that have arisen since the last update in 2016. While growing to encompass the evolving science, clinical applications of stem cells, and the increasingly complex implications of stem cell research for society, the basic principles underlying the Guidelines remain unchanged, and they will continue to serve as the standard for the field and as a resource for scientists, regulators, funders, physicians, and members of the public, including patients. A summary of the key updates and issues is presented here.

87 citations


Journal ArticleDOI
TL;DR: The dentate gyrus of the hippocampus, a region critical for learning and memory functions, is a site of adult neurogenesis in mammals as discussed by the authors, and the extent to which decreased neurogenisation contributes to cognitive decline in aging and AD remains poorly understood.
Abstract: Cognitive deficits associated with Alzheimer's disease (AD) severely impact daily life for the millions of affected individuals. Progressive memory impairment in AD patients is associated with degeneration of the hippocampus. The dentate gyrus of the hippocampus, a region critical for learning and memory functions, is a site of adult neurogenesis in mammals. Recent evidence in humans indicates that hippocampal neurogenesis likely persists throughout life, but declines with age and is strikingly impaired in AD. Our understanding of how neurogenesis supports learning and memory in healthy adults is only beginning to emerge. The extent to which decreased neurogenesis contributes to cognitive decline in aging and AD remains poorly understood. However, studies in rodent models of AD and other neurodegenerative diseases raise the possibility that targeting neurogenesis may ameliorate cognitive dysfunction in AD. Here, we review recent progress in understanding how adult neurogenesis is impacted in the context of aging and AD.

79 citations


Journal ArticleDOI
TL;DR: In this article, the authors generated human induced pluripotent stem cell (iPSC)-derived lung organoids (LORGs), cerebral organoid (CORGs), neural progenitor cells (NPCs), neurons, and astrocytes.
Abstract: COVID-19 is a transmissible respiratory disease caused by a novel coronavirus, SARS-CoV-2, and has become a global health emergency There is an urgent need for robust and practical in vitro model systems to investigate viral pathogenesis Here, we generated human induced pluripotent stem cell (iPSC)-derived lung organoids (LORGs), cerebral organoids (CORGs), neural progenitor cells (NPCs), neurons, and astrocytes LORGs containing epithelial cells, alveolar types 1 and 2, highly express ACE2 and TMPRSS2 and are permissive to SARS-CoV-2 infection SARS-CoV-2 infection induces interferons, cytokines, and chemokines and activates critical inflammasome pathway genes Spike protein inhibitor, EK1 peptide, and TMPRSS2 inhibitors (camostat/nafamostat) block viral entry in LORGs Conversely, CORGs, NPCs, astrocytes, and neurons express low levels of ACE2 and TMPRSS2 and correspondingly are not highly permissive to SARS-CoV-2 infection Infection in neuronal cells activates TLR3/7, OAS2, complement system, and apoptotic genes These findings will aid in understanding COVID-19 pathogenesis and facilitate drug discovery

76 citations


Journal ArticleDOI
TL;DR: In this paper, a new brain region-specific, microglia-containing organoid model by co-culturing hPSC-derived primitive neural progenitor cells and primitive macrophage progenitors is presented.
Abstract: Summary Microglia play critical roles in brain development, homeostasis, and disease. Microglia in animal models cannot accurately model human microglia due to notable transcriptomic and functional differences between human and other animal microglia. Incorporating human pluripotent stem cell (hPSC)-derived microglia into brain organoids provides unprecedented opportunities to study human microglia. However, an optimized method that integrates appropriate amounts of microglia into brain organoids at a proper time point, resembling in vivo brain development, is still lacking. Here, we report a new brain region-specific, microglia-containing organoid model by co-culturing hPSC-derived primitive neural progenitor cells and primitive macrophage progenitors. In the organoids, the number of human microglia can be controlled, and microglia exhibit phagocytic activity and synaptic pruning function. Furthermore, human microglia respond to Zika virus infection of the organoids. Our findings establish a new microglia-containing brain organoid model that will serve to study human microglial function in a variety of neurological disorders.

74 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used human embryonic stem cell-derived cortical organoids to investigate whether SARS-CoV-2 could infect brain tissue in vitro and found that cortical organsoids could be infected at low viral titers and within 6 hours.
Abstract: Coronavirus disease 2019 (COVID-19) patients have manifested a variety of neurological complications, and there is still much to reveal regarding the neurotropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Human stem cell-derived brain organoids offer a valuable in vitro approach to study the cellular effects of SARS-CoV-2 on the brain. Here we used human embryonic stem cell-derived cortical organoids to investigate whether SARS-CoV-2 could infect brain tissue in vitro and found that cortical organoids could be infected at low viral titers and within 6 h. Importantly, we show that glial cells and cells of the choroid plexus were preferentially targeted in our model, but not neurons. Interestingly, we also found expression of angiotensin-converting enzyme 2 in SARS-CoV-2 infected cells; however, viral replication and cell death involving DNA fragmentation does not occur. We believe that our model is a tractable platform to study the cellular effects of SARS-CoV-2 infection in brain tissue.

60 citations


Journal ArticleDOI
TL;DR: In this paper, the authors examined the cardiac tropism of SARS-CoV-2 in human pluripotent stem cell-derived cardiomyocytes and smooth muscle cells (hPSC-SMCs).
Abstract: COVID-19 patients often develop severe cardiovascular complications, but it remains unclear if these are caused directly by viral infection or are secondary to a systemic response. Here, we examine the cardiac tropism of SARS-CoV-2 in human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) and smooth muscle cells (hPSC-SMCs). We find that that SARS-CoV-2 selectively infects hPSC-CMs through the viral receptor ACE2, whereas in hPSC-SMCs there is minimal viral entry or replication. After entry into cardiomyocytes, SARS-CoV-2 is assembled in lysosome-like vesicles and egresses via bulk exocytosis. The viral transcripts become a large fraction of cellular mRNA while host gene expression shifts from oxidative to glycolytic metabolism and upregulates chromatin modification and RNA splicing pathways. Most importantly, viral infection of hPSC-CMs progressively impairs both their electrophysiological and contractile function, and causes widespread cell death. These data support the hypothesis that COVID-19-related cardiac symptoms can result from a direct cardiotoxic effect of SARS-CoV-2.

60 citations


Journal ArticleDOI
TL;DR: In this article, the authors show that the expansion of these CD71+ erythroid precursors/progenitors was negatively correlated with the hemoglobin levels, and that pre-treatment of these cells with dexamethasone significantly diminished ACE2/TMPRSS2 expression and subsequently reduced their infectivity with SARS-CoV-2.
Abstract: SARS-CoV-2 infection is associated with lower blood oxygen levels, even in patients without hypoxia requiring hospitalization. This discordance illustrates the need for a more unifying explanation as to whether SARS-CoV-2 directly or indirectly affects erythropoiesis. Here, we show significantly enriched CD71+ erythroid precursors/progenitors in the blood circulation of COVID-19 patients. We found that these cells have distinctive immunosuppressive properties. In agreement, we observed a strong negative correlation between the frequency of these cells with T and B cell proportions in COVID-19 patients. The expansion of these CD71+ erythroid precursors/progenitors was negatively correlated with the hemoglobin levels. A subpopulation of abundant erythroid cells, CD45+ CD71+ cells, co-express ACE2, TMPRSS2, CD147, and CD26, and these can be infected with SARS-CoV-2. In turn, pre-treatment of erythroid cells with dexamethasone significantly diminished ACE2/TMPRSS2 expression and subsequently reduced their infectivity with SARS-CoV-2. This provides a novel insight into the impact of SARS-CoV-2 on erythropoiesis and hypoxia seen in COVID-19 patients.

52 citations


Journal ArticleDOI
TL;DR: In this article, the retinal ganglion cells (RGCs) responded to environmental cues and extended axons deep into assembloids, modeling the projections of the visual system.
Abstract: Summary The development of the visual system involves the coordination of spatial and temporal events to specify the organization of varied cell types, including the elongation of axons from retinal ganglion cells (RGCs) to post-synaptic targets in the brain. Retinal organoids recapitulate many features of retinal development, yet have lacked downstream targets into which RGC axons extend, limiting the ability to model projections of the human visual system. To address these issues, retinal organoids were generated and organized into an in vitro assembloid model of the visual system with cortical and thalamic organoids. RGCs responded to environmental cues and extended axons deep into assembloids, modeling the projections of the visual system. In addition, RGC survival was enhanced in long-term assembloids, overcoming prior limitations of retinal organoids in which RGCs are lost. Overall, these approaches will facilitate studies of human visual system development, as well as diseases or injuries to this critical pathway.

43 citations


Journal ArticleDOI
TL;DR: In this article, the authors showed that ACE2 expression peaks during erythropoiesis and renders erythroid progenitors vulnerable to infection by SARS-CoV-2.
Abstract: We document here that intensive care COVID-19 patients suffer a profound decline in hemoglobin levels but show an increase of circulating nucleated red cells, suggesting that SARS-CoV-2 infection either directly or indirectly induces stress erythropoiesis. We show that ACE2 expression peaks during erythropoiesis and renders erythroid progenitors vulnerable to infection by SARS-CoV-2. Early erythroid progenitors, defined as CD34-CD117+CD71+CD235a-, show the highest levels of ACE2 and constitute the primary target cell to be infected during erythropoiesis. SARS-CoV-2 causes the expansion of colony formation by erythroid progenitors and can be detected in these cells after 2 weeks of the initial infection. Our findings constitute the first report of SARS-CoV-2 infectivity in erythroid progenitor cells and can contribute to understanding both the clinical symptoms of severe COVID-19 patients and how the virus can spread through the circulation to produce local inflammation in tissues, including the bone marrow.

43 citations


Journal ArticleDOI
Si-Jia Sun1, Rui Wei1, Fei Li1, Song-Yan Liao1, Hung-Fat Tse 
TL;DR: In this paper, the potential mechanisms and therapeutic effects of mesenchymal stromal cell (MSC)-derived exosomes in cardiac regeneration and repair and provide evidence to support their clinical application.
Abstract: Mesenchymal stromal cell (MSC)-derived exosomes play a promising role in regenerative medicine. Their trophic and immunomodulatory potential has made them a promising candidate for cardiac regeneration and repair. Numerous studies have demonstrated that MSC-derived exosomes can replicate the anti-inflammatory, anti-apoptotic, and pro-angiogenic and anti-fibrotic effects of their parent cells and are considered a substitute for cell-based therapies. In addition, their lower tumorigenic risk, superior immune tolerance, and superior stability compared with their parent stem cells make them an attractive option in regenerative medicine. The therapeutic effects of MSC-derived exosomes have consequently been evaluated for application in cardiac regeneration and repair. In this review, we summarize the potential mechanisms and therapeutic effects of MSC-derived exosomes in cardiac regeneration and repair and provide evidence to support their clinical application.

38 citations


Journal ArticleDOI
TL;DR: An immediate challenge is to create embryo models of high fidelity to embryogenesis and organogenesis in vivo, to ensure that the knowledge gleaned is biologically meaningful and clinically relevant.
Abstract: Stem cell-based embryo models open an unprecedented avenue for modeling embryogenesis, cell lineage differentiation, tissue morphogenesis, and organogenesis in mammalian development. Experimentation on these embryo models can lead to a better understanding of the mechanisms of development and offers opportunities for functional genomic studies of disease-causing mechanisms, identification of therapeutic targets, and preclinical modeling of advanced therapeutics for precision medicine. An immediate challenge is to create embryo models of high fidelity to embryogenesis and organogenesis in vivo, to ensure that the knowledge gleaned is biologically meaningful and clinically relevant.

Journal ArticleDOI
TL;DR: It is found that MSC from bone marrow, amniotic fluid and adipose tissue carry angiotensin-converting enzyme 2 and transmembrane protease serine subtype 2 at low levels on the cell surface under steady state and inflammatory conditions.
Abstract: Previous studies reported on the safety and applicability of mesenchymal stem/stromal cells (MSCs) to ameliorate pulmonary inflammation in acute respiratory distress syndrome (ARDS). Thus, multiple clinical trials assessing the potential of MSCs for COVID-19 treatment are underway. Yet, as SARS-inducing coronaviruses infect stem/progenitor cells, it is unclear whether MSCs could be infected by SARS-CoV-2 upon transplantation to COVID-19 patients. We found that MSCs from bone marrow, amniotic fluid, and adipose tissue carry angiotensin-converting enzyme 2 and transmembrane protease serine subtype 2 at low levels on the cell surface under steady-state and inflammatory conditions. We did not observe SARS-CoV-2 infection or replication in MSCs at steady state under inflammatory conditions, or in direct contact with SARS-CoV-2-infected Caco-2 cells. Further, indoleamine 2,3-dioxygenase 1 production in MSCs was not impaired in the presence of SARS-CoV-2. We show that MSCs are resistant to SARS-CoV-2 infection and retain their immunomodulation potential, supporting their potential applicability for COVID-19 treatment.

Journal ArticleDOI
TL;DR: The ISSCR Guidelines for Stem Cell Research and Clinical Translation were last revised in 2016 as mentioned in this paper, and rapid progress has been made in research areas related to in vitro culture of human embryos, creation of stem cell-based embryo models, and in vitro gametogenesis.
Abstract: The ISSCR Guidelines for Stem Cell Research and Clinical Translation were last revised in 2016. Since then, rapid progress has been made in research areas related to in vitro culture of human embryos, creation of stem cell-based embryo models, and in vitro gametogenesis. Therefore, a working group of international experts was convened to review the oversight process and provide an update to the guidelines. This report captures the discussion and summarizes the major recommendations made by this working group, with a specific emphasis on updating the categories of review and engagement with the specialized scientific and ethical oversight process.

Journal ArticleDOI
TL;DR: In this article, the neurotoxic effects of SARS-CoV-2 using brain organoids are summarized and comprehensively discuss how brain organoid could further improve our understanding when they are fine-tuned.
Abstract: COVID-19, caused by SARS-CoV-2, is a socioeconomic burden, which exhibits respiratory illness along with unexpected neurological complications. Concerns have been raised about whether the observed neurological symptoms are due to direct effects on CNS or associated with the virus's systemic effect. Recent SARS-CoV-2 infection studies using human brain organoids revealed that SARS-CoV-2 targets human neurons. Human brain organoids are stem cell-derived reductionist experimental systems that have highlighted the neurotropic effects of SARS-CoV-2. Here, we summarize the neurotoxic effects of SARS-CoV-2 using brain organoids and comprehensively discuss how brain organoids could further improve our understanding when they are fine-tuned.

Journal ArticleDOI
TL;DR: In this paper, a porcine model was used to provide proof-of-concept evidence that a combination of amiodarone and ivabradine can effectively suppress EA.
Abstract: Summary Heart failure remains a significant cause of morbidity and mortality following myocardial infarction. Cardiac remuscularization with transplantation of human pluripotent stem cell-derived cardiomyocytes is a promising preclinical therapy to restore function. Recent large animal data, however, have revealed a significant risk of engraftment arrhythmia (EA). Although transient, the risk posed by EA presents a barrier to clinical translation. We hypothesized that clinically approved antiarrhythmic drugs can prevent EA-related mortality as well as suppress tachycardia and arrhythmia burden. This study uses a porcine model to provide proof-of-concept evidence that a combination of amiodarone and ivabradine can effectively suppress EA. None of the nine treated subjects experienced the primary endpoint of cardiac death, unstable EA, or heart failure compared with five out of eight (62.5%) in the control cohort (hazard ratio = 0.00; 95% confidence interval: 0–0.297; p = 0.002). Pharmacologic treatment of EA may be a viable strategy to improve safety and allow further clinical development of cardiac remuscularization therapy.

Journal ArticleDOI
TL;DR: In this article, the authors apply human induced pluripotent stem cell (hiPSC)-based models and CRISPR engineering to explore the host genetics of SARS-CoV-2, and demonstrate that a single-nucleotide polymorphism (rs4702), common in the population and located in the 3' UTR of the protease FURIN, influences alveolar and neuron infection.
Abstract: The host response to SARS-CoV-2, the etiologic agent of the COVID-19 pandemic, demonstrates significant interindividual variability. In addition to showing more disease in males, the elderly, and individuals with underlying comorbidities, SARS-CoV-2 can seemingly afflict healthy individuals with profound clinical complications. We hypothesize that, in addition to viral load and host antibody repertoire, host genetic variants influence vulnerability to infection. Here we apply human induced pluripotent stem cell (hiPSC)-based models and CRISPR engineering to explore the host genetics of SARS-CoV-2. We demonstrate that a single-nucleotide polymorphism (rs4702), common in the population and located in the 3' UTR of the protease FURIN, influences alveolar and neuron infection by SARS-CoV-2 in vitro. Thus, we provide a proof-of-principle finding that common genetic variation can have an impact on viral infection and thus contribute to clinical heterogeneity in COVID-19. Ongoing genetic studies will help to identify high-risk individuals, predict clinical complications, and facilitate the discovery of drugs.

Journal ArticleDOI
TL;DR: The authors used hydrogel microwell arrays to promote the robust derivation of mouse ESCs into post-implantation epiblast-like (EPI) aggregates in a reproducible and scalable manner.
Abstract: Summary When stimulated with a pulse from an exogenous WNT pathway activator, small aggregates of mouse embryonic stem cells (ESCs) can undergo embryo-like axial morphogenesis and patterning along the three major body axes. However, these structures, called gastruloids, currently lack the anterior embryonic regions, such as those belonging to the brain. Here, we describe an approach to generate gastruloids that have a more complete antero-posterior development. We used hydrogel microwell arrays to promote the robust derivation of mouse ESCs into post-implantation epiblast-like (EPI) aggregates in a reproducible and scalable manner. These EPI aggregates break symmetry and axially elongate without external chemical stimulation. Inhibition of WNT signaling in early stages of development leads to the formation of gastruloids with anterior neural tissues. Thus, we provide a new tool to study the development of the mouse after implantation in vitro, especially the formation of anterior neural regions.

Journal ArticleDOI
TL;DR: In this paper, an in-vitro model of dominant Leber congenital amaurosis (LCA) was established using induced pluripotent stem cells (iPSCs) from a patient with CRX-I138fs48 mutation.
Abstract: Summary Mutations in the photoreceptor transcription factor gene cone-rod homeobox (CRX) lead to distinct retinopathy phenotypes, including early-onset vision impairment in dominant Leber congenital amaurosis (LCA). Using induced pluripotent stem cells (iPSCs) from a patient with CRX-I138fs48 mutation, we established an in vitro model of CRX-LCA in retinal organoids that showed defective photoreceptor maturation by histology and gene profiling, with diminished expression of visual opsins. Adeno-associated virus (AAV)-mediated CRX gene augmentation therapy partially restored photoreceptor phenotype and expression of phototransduction-related genes as determined by single-cell RNA-sequencing. Retinal organoids derived from iPSCs of a second dominant CRX-LCA patient carrying K88N mutation revealed the loss of opsin expression as a common phenotype, which was alleviated by AAV-mediated augmentation of CRX. Our studies provide a proof-of-concept for developing gene therapy of dominant CRX-LCA and other CRX retinopathies.

Journal ArticleDOI
TL;DR: In this paper, a spatially organized cardiac organoid with contracting cardiomyocytes in the center surrounded by stromal cells distributed along the pattern perimeter was used as a developmental toxicity screening assay and quantified the embryotoxic potential of nine pharmaceutical compounds.
Abstract: Summary Emerging technologies in stem cell engineering have produced sophisticated organoid platforms by controlling stem cell fate via biomaterial instructive cues. By micropatterning and differentiating human induced pluripotent stem cells (hiPSCs), we have engineered spatially organized cardiac organoids with contracting cardiomyocytes in the center surrounded by stromal cells distributed along the pattern perimeter. We investigated how geometric confinement directed the structural morphology and contractile functions of the cardiac organoids and tailored the pattern geometry to optimize organoid production. Using modern data-mining techniques, we found that pattern sizes significantly affected contraction functions, particularly in the parameters related to contraction duration and diastolic functions. We applied cardiac organoids generated from 600 μm diameter circles as a developmental toxicity screening assay and quantified the embryotoxic potential of nine pharmaceutical compounds. These cardiac organoids have potential use as an in vitro platform for studying organoid structure-function relationships, developmental processes, and drug-induced cardiac developmental toxicity.

Journal ArticleDOI
TL;DR: This article used single-cell transcriptomics to dissect the cell states that emerge during NGN2 overexpression across a time course from pluripotency to neuron functional maturation.
Abstract: Human neurons engineered from induced pluripotent stem cells (iPSCs) through neurogenin 2 (NGN2) overexpression are widely used to study neuronal differentiation mechanisms and to model neurological diseases. However, the differentiation paths and heterogeneity of emerged neurons have not been fully explored. Here, we used single-cell transcriptomics to dissect the cell states that emerge during NGN2 overexpression across a time course from pluripotency to neuron functional maturation. We find a substantial molecular heterogeneity in the neuron types generated, with at least two populations that express genes associated with neurons of the peripheral nervous system. Neuron heterogeneity is observed across multiple iPSC clones and lines from different individuals. We find that neuron fate acquisition is sensitive to NGN2 expression level and the duration of NGN2-forced expression. Our data reveal that NGN2 dosage can regulate neuron fate acquisition, and that NGN2-iN heterogeneity can confound results that are sensitive to neuron type.

Journal ArticleDOI
TL;DR: In this paper, the authors benchmarked the robustness of MEA-derived neuronal activity patterns from ten healthy individual control lines, and uncovered comparable network phenotypes, showing that MEAs are a powerful and robust tool to uncover functional neuronal network phenotype from human induced pluripotent stem cell (hiPSC)-derived neuronal networks.
Abstract: Micro-electrode arrays (MEAs) are increasingly used to characterize neuronal network activity of human induced pluripotent stem cell (hiPSC)-derived neurons. Despite their gain in popularity, MEA recordings from hiPSC-derived neuronal networks are not always used to their full potential in respect to experimental design, execution, and data analysis. Therefore, we benchmarked the robustness of MEA-derived neuronal activity patterns from ten healthy individual control lines, and uncover comparable network phenotypes. To achieve standardization, we provide recommendations on experimental design and analysis. With such standardization, MEAs can be used as a reliable platform to distinguish (disease-specific) network phenotypes. In conclusion, we show that MEAs are a powerful and robust tool to uncover functional neuronal network phenotypes from hiPSC-derived neuronal networks, and provide an important resource to advance the hiPSC field toward the use of MEAs for disease phenotyping and drug discovery.

Journal ArticleDOI
TL;DR: In this article, the effects of ALS-causing mutations were investigated in a vitro model of a human motor unit to investigate the effect of mutations on neuromuscular junctions.
Abstract: Summary Neuromuscular junctions (NMJs) ensure communication between motor neurons (MNs) and muscle; however, in MN disorders, such as amyotrophic lateral sclerosis (ALS), NMJs degenerate resulting in muscle atrophy. The aim of this study was to establish a versatile and reproducible in vitro model of a human motor unit to investigate the effects of ALS-causing mutations. Therefore, we generated a co-culture of human induced pluripotent stem cell (iPSC)-derived MNs and human primary mesoangioblast-derived myotubes in microfluidic devices. A chemotactic and volumetric gradient facilitated the growth of MN neurites through microgrooves resulting in the interaction with myotubes and the formation of NMJs. We observed that ALS-causing FUS mutations resulted in reduced neurite outgrowth as well as an impaired neurite regrowth upon axotomy. NMJ numbers were likewise reduced in the FUS-ALS model. Interestingly, the selective HDAC6 inhibitor, Tubastatin A, improved the neurite outgrowth, regrowth, and NMJ morphology, prompting HDAC6 inhibition as a potential therapeutic strategy for ALS.

Journal ArticleDOI
TL;DR: In this article, the effect of ApoE4 alleles on neuronal amyloid-β (Aβ) accumulation was investigated and it was shown that increased cholesterol secretion from apoEE4 astrocytes was necessary and sufficient to induce the formation of lipid rafts that potentially provided a physical platform for APP localization and facilitate its processing.
Abstract: The e4 allele of APOE-encoding apolipoprotein (ApoE) is one of the strongest genetic risk factors for Alzheimer's disease (AD). One of the overarching questions is whether and how this astrocyte-enriched risk factor initiates AD-associated pathology in neurons such as amyloid-β (Aβ) accumulation. Here, we generate neurons and astrocytes from isogenic human induced pluripotent stem cells (hiPSCs) carrying either APOE e3 or APOE e4 allele and investigate the effect of astrocytic ApoE4 on neuronal Aβ production. Secretory factors in conditioned media from ApoE4 astrocytes significantly increased amyloid precursor protein (APP) levels and Aβ secretion in neurons. We further found that increased cholesterol secretion from ApoE4 astrocytes was necessary and sufficient to induce the formation of lipid rafts that potentially provide a physical platform for APP localization and facilitate its processing. Our study reveals the contribution of ApoE4 astrocytes to amyloidosis in neurons by expanding lipid rafts and facilitating Aβ production through an oversupply of cholesterol.

Journal ArticleDOI
TL;DR: In this paper, the authors used an established in-vivo hamster model to demonstrate that SARS-CoV-2 can be detected in cardiomyocytes of infected animals.
Abstract: Heart injury has been reported in up to 20% of COVID-19 patients, yet the cause of myocardial histopathology remains unknown. Here, using an established in vivo hamster model, we demonstrate that SARS-CoV-2 can be detected in cardiomyocytes of infected animals. Furthermore, we found damaged cardiomyocytes in hamsters and COVID-19 autopsy samples. To explore the mechanism, we show that both human pluripotent stem cell-derived cardiomyocytes (hPSC-derived CMs) and adult cardiomyocytes (CMs) can be productively infected by SARS-CoV-2, leading to secretion of the monocyte chemoattractant cytokine CCL2 and subsequent monocyte recruitment. Increased CCL2 expression and monocyte infiltration was also observed in the hearts of infected hamsters. Although infected CMs suffer damage, we find that the presence of macrophages significantly reduces SARS-CoV-2-infected CMs. Overall, our study provides direct evidence that SARS-CoV-2 infects CMs in vivo and suggests a mechanism of immune cell infiltration and histopathology in heart tissues of COVID-19 patients.

Journal ArticleDOI
TL;DR: A simple method is developed that could drive cultured hiPSC-CMs toward maturity across a number of phenotypes, with the aim of utilizing mature hiPSCs to model human cardiovascular disease.
Abstract: Summary Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a powerful platform for biomedical research. However, they are immature, which is a barrier to modeling adult-onset cardiovascular disease. Here, we sought to develop a simple method that could drive cultured hiPSC-CMs toward maturity across a number of phenotypes, with the aim of utilizing mature hiPSC-CMs to model human cardiovascular disease. hiPSC-CMs were cultured in fatty acid-based medium and plated on micropatterned surfaces. These cells display many characteristics of adult human cardiomyocytes, including elongated cell morphology, sarcomeric maturity, and increased myofibril contractile force. In addition, mature hiPSC-CMs develop pathological hypertrophy, with associated myofibril relaxation defects, in response to either a pro-hypertrophic agent or genetic mutations. The more mature hiPSC-CMs produced by these methods could serve as a useful in vitro platform for characterizing cardiovascular disease.

Journal ArticleDOI
TL;DR: In this article, a high-performing assay to measure gastruloid formation efficiency (GFE) was proposed, and it was shown that GFE decreases as pluripotency progresses from naive to a primed state.
Abstract: Summary Floating spheroidal aggregates of mouse embryonic stem cells can develop into polarized/elongated organoids, namely gastruloids. We set up a high-performing assay to measure gastruloid formation efficiency (GFE), and found that GFE decreases as pluripotency progresses from naive (GFE ≥ 95%) to primed (GFE = 0) state. Specifically, we show that primed EpiSCs fail to generate proper cell aggregates, while early-primed EpiLCs aggregate but eventually fail to develop into elongated gastruloids. Moreover, we characterized proline-induced cells (PiCs), a LIF-dependent reversible early-primed state of pluripotency, and show that PiCs are able to generate gastruloids (GFE ∼ 50%) and are also competent to differentiate into primordial germ cell-like cells. Thus, we propose the GFE assay as a valuable functional tool to discriminate different states of the pluripotency continuum.

Journal ArticleDOI
TL;DR: In this article, the differentiation of human induced pluripotent stem cells (hiPSCs) into microglia (iMG) by forced expression of both SPI1 and CEBPA was reported.
Abstract: Summary Microglia, the immune cells of the central nervous system, play critical roles in brain physiology and pathology. We report a novel approach that produces, within 10 days, the differentiation of human induced pluripotent stem cells (hiPSCs) into microglia (iMG) by forced expression of both SPI1 and CEBPA. High-level expression of the main microglial markers and the purity of the iMG cells were confirmed by RT-qPCR, immunostaining, and flow cytometry analyses. Whole-transcriptome analysis demonstrated that these iMGs resemble human fetal/adult microglia but not human monocytes. Moreover, these iMGs exhibited appropriate physiological functions, including various inflammatory responses, ADP/ATP-evoked migration, and phagocytic ability. When co-cultured with hiPSC-derived neurons, the iMGs respond and migrate toward injured neurons. This study has established a protocol for the rapid conversion of hiPSCs into functional iMGs, which should facilitate functional studies of human microglia using different disease models and also help with drug discovery.

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate the derivation of induced pluripotent stem cells (iPSCs) from multiple mammalian species from three different taxonomic orders, including the common marmoset (Callithrix jacchus) in Primates, the dog (Canis lupus familiaris) in Carnivora, and the pig (Sus scrofa) in Cetartiodactyla, by combinatorial usage of chemical compounds and NTI episomal vectors.
Abstract: Induced pluripotent stem cells (iPSCs) are capable of providing an unlimited source of cells from all three germ layers and germ cells. The derivation and usage of iPSCs from various animal models may facilitate stem cell-based therapy, gene-modified animal production, and evolutionary studies assessing interspecies differences. However, there is a lack of species-wide methods for deriving iPSCs, in particular by means of non-viral and non-transgene-integrating (NTI) approaches. Here, we demonstrate the iPSC derivation from somatic fibroblasts of multiple mammalian species from three different taxonomic orders, including the common marmoset (Callithrix jacchus) in Primates, the dog (Canis lupus familiaris) in Carnivora, and the pig (Sus scrofa) in Cetartiodactyla, by combinatorial usage of chemical compounds and NTI episomal vectors. Interestingly, the fibroblasts temporarily acquired a neural stem cell-like state during the reprogramming. Collectively, our method, robustly applicable to various species, holds a great potential for facilitating stem cell-based research using various animals in Mammalia.

Journal ArticleDOI
TL;DR: In this article, the authors optimize the human intestinal organoids and hypothesize that these optimized organoids can recapitulate enteric infections of enterovirus and coronavirus.
Abstract: Enteroviruses, such as EV-A71 and CVA16, mainly infect the human gastrointestinal tract. Human coronaviruses, including SARS-CoV and SARS-CoV-2, have been variably associated with gastrointestinal symptoms. We aimed to optimize the human intestinal organoids and hypothesize that these optimized intestinal organoids can recapitulate enteric infections of enterovirus and coronavirus. We demonstrate that the optimized human intestinal organoids enable better simulation of the native human intestinal epithelium, and that they are significantly more susceptible to EV-A71 than CVA16. Higher replication of EV-A71 than CVA16 in the intestinal organoids triggers a more vigorous cellular response. However, SARS-CoV and SARS-CoV-2 exhibit distinct dynamics of virus-host interaction; more robust propagation of SARS-CoV triggers minimal cellular response, whereas, SARS-CoV-2 exhibits lower replication capacity but elicits a moderate cellular response. Taken together, the disparate profile of the virus-host interaction of enteroviruses and coronaviruses in human intestinal organoids may unravel the cellular basis of the distinct pathogenicity of these viral pathogens.

Journal ArticleDOI
TL;DR: How hPSC-derived cardiovascular cells have been utilized to study COVID-19, and their potential for further understanding the cardiac pathology and in therapeutic development are outlined.
Abstract: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to the coronavirus disease (COVID-19) outbreak that became a pandemic in 2020, causing more than 30 million infections and 1 million deaths to date. As the scientific community has looked for vaccines and drugs to treat or eliminate the virus, unexpected features of the disease have emerged. Apart from respiratory complications, cardiovascular disease has emerged as a major indicator of poor prognosis in COVID-19. It has therefore become of utmost importance to understand how SARS-CoV-2 damages the heart. Human pluripotent stem cell (hPSC) cardiovascular derivatives were rapidly recognized as an invaluable tool to address this, not least because one of the major receptors for the virus is not recognized by SARS-CoV-2 in mice. Here, we outline how hPSC-derived cardiovascular cells have been utilized to study COVID-19, and their potential for further understanding the cardiac pathology and in therapeutic development.