scispace - formally typeset
Open AccessJournal ArticleDOI

Cerebral organoids model human brain development and microcephaly

Reads0
Chats0
TLDR
A human pluripotent stem cell-derived three-dimensional organoid culture system that develops various discrete, although interdependent, brain regions that include a cerebral cortex containing progenitor populations that organize and produce mature cortical neuron subtypes is developed.
Abstract
The complexity of the human brain has made it difficult to study many brain disorders in model organisms, highlighting the need for an in vitro model of human brain development Here we have developed a human pluripotent stem cell-derived three-dimensional organoid culture system, termed cerebral organoids, that develop various discrete, although interdependent, brain regions These include a cerebral cortex containing progenitor populations that organize and produce mature cortical neuron subtypes Furthermore, cerebral organoids are shown to recapitulate features of human cortical development, namely characteristic progenitor zone organization with abundant outer radial glial stem cells Finally, we use RNA interference and patient-specific induced pluripotent stem cells to model microcephaly, a disorder that has been difficult to recapitulate in mice We demonstrate premature neuronal differentiation in patient organoids, a defect that could help to explain the disease phenotype Together, these data show that three-dimensional organoids can recapitulate development and disease even in this most complex human tissue

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Brain organoids: an ensemble of bioassays to investigate human neurodevelopment and disease.

TL;DR: Diverse brain organoid techniques offer bioassays to investigate new phenotypes associated with human brain disorders that are difficult to study in monolayer cultures and need to aim at later stages of neurodevelopment, linked with neuronal activity and connections, to unravel further disease-associated phenotypes.

Modeling psychiatric disorders for developing effective treatments

TL;DR: The utility and limitations of animal models are discussed, and the importance of shifting from behavioral analysis to identifying neurophysiological abnormalities, which are likely to be more conserved across species and thus may increase translatability.
Journal ArticleDOI

Kidney organoids: accurate models or fortunate accidents.

TL;DR: How well human kidney organoids model the human fetal kidney and how the remaining differences challenge their utility are discussed.
Journal ArticleDOI

Kidney micro-organoids in suspension culture as a scalable source of human pluripotent stem cell-derived kidney cells

TL;DR: A modified suspension culture method for the generation of kidney micro-organoids from human pluripotent stem cells offers a simple and cost-effective method for expansion of hPSC-derived kidney cells, facilitating scale-up of kidney cell types in vitro for biomedical applications.
References
More filters
Journal ArticleDOI

Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.

TL;DR: Induction of pluripotent stem cells from mouse embryonic or adult fibroblasts by introducing four factors, Oct3/4, Sox2, c-Myc, and Klf4, under ES cell culture conditions is demonstrated and iPS cells, designated iPS, exhibit the morphology and growth properties of ES cells and express ES cell marker genes.
Journal ArticleDOI

Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche.

TL;DR: It is concluded that intestinal crypt–villus units are self-organizing structures, which can be built from a single stem cell in the absence of a non-epithelial cellular niche.
Journal ArticleDOI

Generation of germline-competent induced pluripotent stem cells

TL;DR: iPS cells competent for germline chimaeras can be obtained from fibroblasts, but retroviral introduction of c-Myc should be avoided for clinical application.
Journal ArticleDOI

A ROCK inhibitor permits survival of dissociated human embryonic stem cells

TL;DR: Application of a selective Rho-associated kinase (ROCK) inhibitor, Y-27632, to hES cells markedly diminishes dissociation-induced apoptosis, increases cloning efficiency and facilitates subcloning after gene transfer, and enables SFEB-cultured hES Cells to survive and differentiate into Bf1+ cortical and basal telencephalic progenitors.
Journal ArticleDOI

The cell biology of neurogenesis.

TL;DR: In this paper, the authors discuss how these features change during development from neuroepithelial to radial glial cells, and how this transition affects cell fate and neurogenesis.
Related Papers (5)