scispace - formally typeset
Open AccessJournal ArticleDOI

Cerebral organoids model human brain development and microcephaly

Reads0
Chats0
TLDR
A human pluripotent stem cell-derived three-dimensional organoid culture system that develops various discrete, although interdependent, brain regions that include a cerebral cortex containing progenitor populations that organize and produce mature cortical neuron subtypes is developed.
Abstract
The complexity of the human brain has made it difficult to study many brain disorders in model organisms, highlighting the need for an in vitro model of human brain development Here we have developed a human pluripotent stem cell-derived three-dimensional organoid culture system, termed cerebral organoids, that develop various discrete, although interdependent, brain regions These include a cerebral cortex containing progenitor populations that organize and produce mature cortical neuron subtypes Furthermore, cerebral organoids are shown to recapitulate features of human cortical development, namely characteristic progenitor zone organization with abundant outer radial glial stem cells Finally, we use RNA interference and patient-specific induced pluripotent stem cells to model microcephaly, a disorder that has been difficult to recapitulate in mice We demonstrate premature neuronal differentiation in patient organoids, a defect that could help to explain the disease phenotype Together, these data show that three-dimensional organoids can recapitulate development and disease even in this most complex human tissue

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

hESC-Derived Thalamic Organoids Form Reciprocal Projections When Fused with Cortical Organoids

TL;DR: A method to differentiate human embryonic stem cells (hESCs) to thalamic organoids (hThOs) that specifically recapitulate the development of thalamus is described, which provides a platform for understanding humanThalamic development and modeling circuit organizations and related disorders in the brain.
Journal ArticleDOI

High-resolution 3D imaging of fixed and cleared organoids

TL;DR: A detailed protocol for performing high-resolution 3D imaging of entire organoids harboring fluorescence reporters and following immunolabeling is provided, applicable to a wide range of organoids of differing origins and of various sizes and shapes.
Journal ArticleDOI

Colonic organoids derived from human induced pluripotent stem cells for modeling colorectal cancer and drug testing

TL;DR: In this paper, an effective protocol for deriving colonic organoids (COs) from differentiated human embryonic stem cells (hESCs) or induced pluripotent stem cells(iPSCs) was developed for modeling human disease of the large intestine.
Journal ArticleDOI

Genetically engineered cerebral organoids model brain tumor formation.

TL;DR: A 3D in vitro model called a neoplastic cerebral organoid (neoCOR), in which brain tumorigenesis is recapitulate by introducing oncogenic mutations in cerebral organoids via transposon- and CRISPR–Cas9-mediated mutagenesis, that will provide a valuable complement to the current basic and preclinical models used to study brain tumor biology.
Journal ArticleDOI

How to make a midbrain dopaminergic neuron

TL;DR: This Primer summarises recent efforts to generate human midbrain dopaminergic neurons in vitro, from pluripotent stem cells or from somatic cells via direct reprogramming.
References
More filters
Journal ArticleDOI

Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.

TL;DR: Induction of pluripotent stem cells from mouse embryonic or adult fibroblasts by introducing four factors, Oct3/4, Sox2, c-Myc, and Klf4, under ES cell culture conditions is demonstrated and iPS cells, designated iPS, exhibit the morphology and growth properties of ES cells and express ES cell marker genes.
Journal ArticleDOI

Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche.

TL;DR: It is concluded that intestinal crypt–villus units are self-organizing structures, which can be built from a single stem cell in the absence of a non-epithelial cellular niche.
Journal ArticleDOI

Generation of germline-competent induced pluripotent stem cells

TL;DR: iPS cells competent for germline chimaeras can be obtained from fibroblasts, but retroviral introduction of c-Myc should be avoided for clinical application.
Journal ArticleDOI

A ROCK inhibitor permits survival of dissociated human embryonic stem cells

TL;DR: Application of a selective Rho-associated kinase (ROCK) inhibitor, Y-27632, to hES cells markedly diminishes dissociation-induced apoptosis, increases cloning efficiency and facilitates subcloning after gene transfer, and enables SFEB-cultured hES Cells to survive and differentiate into Bf1+ cortical and basal telencephalic progenitors.
Journal ArticleDOI

The cell biology of neurogenesis.

TL;DR: In this paper, the authors discuss how these features change during development from neuroepithelial to radial glial cells, and how this transition affects cell fate and neurogenesis.
Related Papers (5)