scispace - formally typeset
Open AccessJournal ArticleDOI

Decoding ALS: from genes to mechanism

TLDR
Extraordinary progress in understanding the biology of ALS provides new reasons for optimism that meaningful therapies will be identified, and emerging themes include dysfunction in RNA metabolism and protein homeostasis, with specific defects in nucleocytoplasmic trafficking.
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and uniformly fatal neurodegenerative disease. A plethora of genetic factors have been identified that drive the degeneration of motor neurons in ALS, increase susceptibility to the disease or influence the rate of its progression. Emerging themes include dysfunction in RNA metabolism and protein homeostasis, with specific defects in nucleocytoplasmic trafficking, the induction of stress at the endoplasmic reticulum and impaired dynamics of ribonucleoprotein bodies such as RNA granules that assemble through liquid-liquid phase separation. Extraordinary progress in understanding the biology of ALS provides new reasons for optimism that meaningful therapies will be identified.

read more

Citations
More filters
Journal ArticleDOI

Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling.

TL;DR: Studies in model organisms and humans are discussed, which reveal the dual roles of SOD enzymes in controlling damage and regulating signaling and the need for fine local control of ROS signaling.
Journal ArticleDOI

Neuronal cell-type classification: challenges, opportunities and the path forward

TL;DR: In this paper, a staged approach for cell type classification in the brain is proposed, including the incorporation of multiple, quantitative features as criteria, the use of discontinuous variation to define types and the creation of a hierarchical system to represent relationships between cells.
Journal ArticleDOI

Oxidative Stress in Neurodegenerative Diseases: From Molecular Mechanisms to Clinical Applications.

TL;DR: Novel antioxidants have shown great potential in mediating disease phenotypes and could be an area of interest for further research, as well as a highlight on the antioxidant-based therapies for alleviating disease severity.
References
More filters
Journal ArticleDOI

Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis

TL;DR: Tight genetic linkage between FALS and a gene that encodes a cytosolic, Cu/Zn-binding superoxide dismutase (SOD1), a homodimeric metalloenzyme that catalyzes the dismutation of the toxic superoxide anion O–2 to O2 and H2O2 is reported.
Journal ArticleDOI

Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation.

TL;DR: In this article, the authors found that mutations of human Cu,Zn superoxide dismutase (SOD) contribute to the pathogenesis of familial amyotrophic lateral sclerosis (ALS).
Journal ArticleDOI

A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD

Alan E. Renton, +85 more
- 20 Oct 2011 - 
TL;DR: The chromosome 9p21 amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD) locus contains one of the last major unidentified autosomal-dominant genes underlying these common neurodegenerative diseases, and a large hexanucleotide repeat expansion in the first intron of C9ORF72 is shown.
Related Papers (5)

A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD

Alan E. Renton, +85 more
- 20 Oct 2011 -