scispace - formally typeset
Open AccessJournal ArticleDOI

Design considerations for tumour-targeted nanoparticles

TLDR
This study shows that quantum dots functionalized with high-affinity small-molecule ligands that target tumours can also be cleared by the kidneys if their hydrodynamic diameter is less than this value, which sets an upper limit of 5-10 ligands per quantum dot for renal clearance.
Abstract
Inorganic/organic hybrid nanoparticles are potentially useful in biomedicine, but to avoid non-specific background fluorescence and long-term toxicity, they need to be cleared from the body within a reasonable timescale 1 . Previously, we have shown that rigid spherical nanoparticles such as quantum dots can be cleared by the kidneys if they have a hydrodynamic diameter of approximately 5.5 nm and a zwitterionic surface charge 2 . Here, we show that quantum dots functionalized with highaffinity small-molecule ligands that target tumours can also be cleared by the kidneys if their hydrodynamic diameter is less than this value, which sets an upper limit of 5–10 ligands per quantum dot for renal clearance. Animal models of prostate cancer and melanoma show receptor-specific imaging and renal clearance within 4 h post-injection. This study suggests a set of design rules for the clinical translation of targeted nanoparticles that can be eliminated through the kidneys. Although many classes of biocompatible, inorganic-based nanomaterials have been developed for medical diagnostics and therapeutics 3–7 , many presently available formulations require potentially toxic elements 8 . Efforts have been made to reduce toxicity by modulating the composition, particle shape, physical size and surface coating of the nanoparticles 9 . One common strategy is to engineer nanoparticles using biocompatible and biodegradable polymeric coatings 10–13 . However, polymer coatings generally increase particle

read more

Citations
More filters
Journal ArticleDOI

Delivering nanomedicine to solid tumors

TL;DR: In this paper, the authors review the barriers to the delivery of cancer therapeutics and summarize strategies that have been developed to overcome these barriers and discuss design considerations for optimizing the nanoparticles to tumors.
Journal ArticleDOI

Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems

Andrea C. Ferrari, +68 more
- 04 Mar 2015 - 
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Journal ArticleDOI

Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology.

TL;DR: Chemistries that Facilitate Nanotechnology Kim E. Sapsford,† W. Russ Algar, Lorenzo Berti, Kelly Boeneman Gemmill,‡ Brendan J. Casey,† Eunkeu Oh, Michael H. Stewart, and Igor L. Medintz .
Journal ArticleDOI

Biological applications of magnetic nanoparticles

TL;DR: An overview about biological applications of magnetic colloidal nanoparticles will be given, which comprises their synthesis, characterization, and in vitro and in vivo applications, to address the remaining challenges for an extended application of magnetic nanoparticles in medicine.
References
More filters
Journal ArticleDOI

Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics

TL;DR: The new generations of qdots have far-reaching potential for the study of intracellular processes at the single-molecule level, high-resolution cellular imaging, long-term in vivo observation of cell trafficking, tumor targeting, and diagnostics.
Journal ArticleDOI

Nanocarriers as an emerging platform for cancer therapy

TL;DR: The arsenal of nanocarriers and molecules available for selective tumour targeting, and the challenges in cancer treatment are detailed and emphasized.
Journal ArticleDOI

Quantum dot bioconjugates for imaging, labelling and sensing

TL;DR: This review looks at current methods for preparing QD bioconjugates as well as presenting an overview of applications, and concludes that the potential of QDs in biology has just begun to be realized and new avenues will arise as the ability to manipulate these materials improves.
Journal ArticleDOI

In vivo cancer targeting and imaging with semiconductor quantum dots

TL;DR: Sensitive and multicolor fluorescence imaging of cancer cells under in vivo conditions are achieved and a whole-body macro-illumination system with wavelength-resolved spectral imaging is integrated for efficient background removal and precise delineation of weak spectral signatures.
Journal ArticleDOI

Nanoparticle therapeutics: an emerging treatment modality for cancer

TL;DR: The features of nanoparticle therapeutics that distinguish them from previous anticancer therapies are highlighted, and how these features provide the potential for therapeutic effects that are not achievable with other modalities are described.
Related Papers (5)