scispace - formally typeset
Journal ArticleDOI

Device scaling limits of Si MOSFETs and their application dependencies

Reads0
Chats0
TLDR
The end result is that there is no single end point for scaling, but that instead there are many end points, each optimally adapted to its particular applications.
Abstract
This paper presents the current state of understanding of the factors that limit the continued scaling of Si complementary metal-oxide-semiconductor (CMOS) technology and provides an analysis of the ways in which application-related considerations enter into the determination of these limits. The physical origins of these limits are primarily in the tunneling currents, which leak through the various barriers in a MOS field-effect transistor (MOSFET) when it becomes very small, and in the thermally generated subthreshold currents. The dependence of these leakages on MOSFET geometry and structure is discussed along with design criteria for minimizing short-channel effects and other issues related to scaling. Scaling limits due to these leakage currents arise from application constraints related to power consumption and circuit functionality. We describe how these constraints work out for some of the most important application classes: dynamic random access memory (DRAM), static random access memory (SRAM), low-power portable devices, and moderate and high-performance CMOS logic. As a summary, we provide a table of our estimates of the scaling limits for various applications and device types. The end result is that there is no single end point for scaling, but that instead there are many end points, each optimally adapted to its particular applications.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Hybrid CMOS/nanoelectronic digital circuits: devices, architectures, and design automation

TL;DR: This tutorial highlights key issues and architectural alternatives for this promising technology and outlines the challenges posed by the hybrid circuits pose for design automation.
Journal ArticleDOI

Scaling constraints in nanoelectronic random-access memories.

TL;DR: Using a combined circuit theoretical modelling and simulation approach, the impact of both the device and interconnect architecture on the scalability of a conductivity-state memory system is quantified.
Journal ArticleDOI

Toward five-dimensional scaling: how density improves efficiency in future computers

TL;DR: It is found that historical efficiency trends are related to density and that current transistors are small enough for zetascale systems once communication and supply networks are simultaneously optimized.
Journal ArticleDOI

Sleep switch dual threshold Voltage domino logic with reduced standby leakage current

TL;DR: The energy overhead of the circuit technique is low, justifying the activation of the proposed sleep scheme by providing a net savings in total power consumption during short idle periods.
References
More filters
Journal ArticleDOI

Introduction to Solid State Physics

Charles Kittel, +1 more
- 01 Aug 1954 - 
Book

Introduction to solid state physics

TL;DR: In this paper, the Hartree-Fock Approximation of many-body techniques and the Electron Gas Polarons and Electron-phonon Interaction are discussed.
Journal ArticleDOI

Introduction to Solid State Physics

A R Plummer
- 01 Jul 1967 - 
TL;DR: Kind's new edition is to be welcomed as mentioned in this paper, with a revised format and attractive illustrations, and with the inclusion of much new material this book has become one of the best sources for undergraduate teaching, likely to give the student a wish to dig deeper into the solid state.
Journal ArticleDOI

High-performance heat sinking for VLSI

TL;DR: In this paper, a water-cooled integral heat sink for silicon integrated circuits has been designed and tested at a power density of 790 W/cm2, with a maximum substrate temperature rise of 71°C above the input water temperature.
Journal ArticleDOI

Design of ion-implanted MOSFET's with very small physical dimensions

TL;DR: This paper considers the design, fabrication, and characterization of very small Mosfet switching devices suitable for digital integrated circuits, using dimensions of the order of 1 /spl mu/.
Related Papers (5)