scispace - formally typeset
Journal ArticleDOI

Device scaling limits of Si MOSFETs and their application dependencies

Reads0
Chats0
TLDR
The end result is that there is no single end point for scaling, but that instead there are many end points, each optimally adapted to its particular applications.
Abstract
This paper presents the current state of understanding of the factors that limit the continued scaling of Si complementary metal-oxide-semiconductor (CMOS) technology and provides an analysis of the ways in which application-related considerations enter into the determination of these limits. The physical origins of these limits are primarily in the tunneling currents, which leak through the various barriers in a MOS field-effect transistor (MOSFET) when it becomes very small, and in the thermally generated subthreshold currents. The dependence of these leakages on MOSFET geometry and structure is discussed along with design criteria for minimizing short-channel effects and other issues related to scaling. Scaling limits due to these leakage currents arise from application constraints related to power consumption and circuit functionality. We describe how these constraints work out for some of the most important application classes: dynamic random access memory (DRAM), static random access memory (SRAM), low-power portable devices, and moderate and high-performance CMOS logic. As a summary, we provide a table of our estimates of the scaling limits for various applications and device types. The end result is that there is no single end point for scaling, but that instead there are many end points, each optimally adapted to its particular applications.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Scaling analysis of electron transport through metal-semiconducting carbon nanotube interfaces: Evolution from the molecular limit to the bulk limit

TL;DR: In this paper, a scaling analysis of electronic and transport properties of metal-semiconducting carbon nanotube interfaces is presented, which takes fully into account atomic-scale electronic structure and three-dimensional electrostatics of the metal-nanotube interface using a real-space Green's function based self-consistent tight-binding theory.
Journal ArticleDOI

Limits of CMOS Technology and Interest of NEMS Relays for Adiabatic Logic Applications

TL;DR: A detailed analysis and comparison of nanoelectromechanical systems (NEMS) and CMOS technologies for low power adiabatic logic implementation is presented, and the contribution of the power-clock or energy recovery generator is estimated in order to compare CMOS and NEMS-based adiABatic architectures at the system level.
Journal ArticleDOI

Advanced SOI MOSFETs with buried alumina and ground plane: self-heating and short-channel effects

TL;DR: In this paper, the authors demonstrate that the thermal dissipation and self-heating in SOI MOSFETs can dramatically be improved by modifying the generic SOI structure: replacement of the buried oxide with buried alumina.
Journal ArticleDOI

A Universal Core Model for Multiple-Gate Field-Effect Transistors. Part II: Drain Current Model

TL;DR: In this paper, a universal drain current model for multiple-gate field effect transistors (FETs) (Mug-FET) is proposed, which describes both the subthreshold inversion for undoped FETs and the effects of finite doping density in the channel.
Journal ArticleDOI

Strain and Materials Engineering for the I-MOS Transistor With an Elevated Impact-Ionization Region

TL;DR: In this article, the relationship and impact of strain and bandgap on the generation of impact-ionization carriers were discussed and explored through simulations and experiments, and an excellent subthreshold swing of sub-5 mV/dec at room temperature was demonstrated for the three I-MOS transistor structures.
References
More filters
Journal ArticleDOI

Introduction to Solid State Physics

Charles Kittel, +1 more
- 01 Aug 1954 - 
Book

Introduction to solid state physics

TL;DR: In this paper, the Hartree-Fock Approximation of many-body techniques and the Electron Gas Polarons and Electron-phonon Interaction are discussed.
Journal ArticleDOI

Introduction to Solid State Physics

A R Plummer
- 01 Jul 1967 - 
TL;DR: Kind's new edition is to be welcomed as mentioned in this paper, with a revised format and attractive illustrations, and with the inclusion of much new material this book has become one of the best sources for undergraduate teaching, likely to give the student a wish to dig deeper into the solid state.
Journal ArticleDOI

High-performance heat sinking for VLSI

TL;DR: In this paper, a water-cooled integral heat sink for silicon integrated circuits has been designed and tested at a power density of 790 W/cm2, with a maximum substrate temperature rise of 71°C above the input water temperature.
Journal ArticleDOI

Design of ion-implanted MOSFET's with very small physical dimensions

TL;DR: This paper considers the design, fabrication, and characterization of very small Mosfet switching devices suitable for digital integrated circuits, using dimensions of the order of 1 /spl mu/.
Related Papers (5)