scispace - formally typeset
Open AccessJournal ArticleDOI

Effects of waveform model systematics on the interpretation of GW150914

B. P. Abbott, +996 more
Reads0
Chats0
TLDR
In this article, the effects of possible systematic errors in the waveform models on estimates of its source parameters were investigated and no evidence for a systematic bias relative to the statistical error of the original parameter recovery of GW150914 due to modeling approximations or modeling inaccuracies was found.
Abstract
Parameter estimates of GW150914 were obtained using Bayesian inference, based on three semi-analytic waveform models for binary black hole coalescences. These waveform models differ from each other in their treatment of black hole spins, and all three models make some simplifying assumptions, notably to neglect sub-dominant waveform harmonic modes and orbital eccentricity. Furthermore, while the models are calibrated to agree with waveforms obtained by full numerical solutions of Einstein's equations, any such calibration is accurate only to some non-zero tolerance and is limited by the accuracy of the underlying phenomenology, availability, quality, and parameter-space coverage of numerical simulations. This paper complements the original analyses of GW150914 with an investigation of the effects of possible systematic errors in the waveform models on estimates of its source parameters. To test for systematic errors we repeat the original Bayesian analyses on mock signals from numerical simulations of a series of binary configurations with parameters similar to those found for GW150914. Overall, we find no evidence for a systematic bias relative to the statistical error of the original parameter recovery of GW150914 due to modeling approximations or modeling inaccuracies. However, parameter biases are found to occur for some configurations disfavored by the data of GW150914: for binaries inclined edge-on to the detector over a small range of choices of polarization angles, and also for eccentricities greater than $\sim$0.05. For signals with higher signal-to-noise ratio than GW150914, or in other regions of the binary parameter space (lower masses, larger mass ratios, or higher spins), we expect that systematic errors in current waveform models may impact gravitational-wave measurements, making more accurate models desirable for future observations.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs

B. P. Abbott, +1148 more
- 04 Sep 2019 - 
TL;DR: In this paper, the authors presented the results from three gravitational-wave searches for coalescing compact binaries with component masses above 1 Ma during the first and second observing runs of the advanced GW detector network.
Journal ArticleDOI

GW170814: A three-detector observation of gravitational waves from a binary black hole coalescence

B. P. Abbott, +1116 more
TL;DR: For the first time, the nature of gravitational-wave polarizations from the antenna response of the LIGO-Virgo network is tested, thus enabling a new class of phenomenological tests of gravity.
Journal ArticleDOI

GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run

Richard J. Abbott, +1350 more
- 09 Jun 2021 - 
TL;DR: In this article, the authors present 39 candidate gravitational wave events from compact binary coalescences detected by Advanced LIGO and Advanced Virgo in the first half of the third observing run (O3a) between 1 April 2019 15:00 UTC and 1 October 2019 15.00.
Journal ArticleDOI

Properties of the Binary Neutron Star Merger GW170817

B. P. Abbott, +1160 more
- 02 Jan 2019 - 
TL;DR: In this paper, the authors improved initial estimates of the binary's properties, including component masses, spins, and tidal parameters, using the known source location, improved modeling, and recalibrated Virgo data.
Journal ArticleDOI

Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1

B. P. Abbott, +1141 more
- 20 Nov 2019 - 
TL;DR: In this paper, the authors present four tests of the consistency of the data with binary black hole gravitational waveforms predicted by general relativity, including the best-fit waveform from the data and the consistency with detector noise.
References
More filters
BookDOI

Probability theory : the logic of science

TL;DR: In this article, a survey of elementary applications of probability theory can be found, including the following: 1. Plausible reasoning 2. The quantitative rules 3. Elementary sampling theory 4. Elementary hypothesis testing 5. Queer uses for probability theory 6. Elementary parameter estimation 7. The central, Gaussian or normal distribution 8. Sufficiency, ancillarity, and all that 9. Repetitive experiments, probability and frequency 10. Advanced applications: 11. Discrete prior probabilities, the entropy principle 12. Simple applications of decision theory 15.
Book

Numerical Relativity

TL;DR: In this paper, a wide variety of scientific numerical results are introduced focusing in particular on the merger of binary neutron stars and black holes, which is suitable for advanced ungraduate students, postgraduate students and researchers who are interested in numerical relativity.
Related Papers (5)

Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott, +1011 more

GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence

B. P. Abbott, +973 more

Properties of the Binary Black Hole Merger GW150914

B. P. Abbott, +987 more

Advanced Virgo: a 2nd generation interferometric gravitational wave detector

Fausto Acernese, +227 more

Advanced Virgo: a second-generation interferometric gravitational wave detector

Fausto Acernese, +233 more