scispace - formally typeset
Open AccessJournal ArticleDOI

Engineering precision nanoparticles for drug delivery

Reads0
Chats0
TLDR
Advances in nanoparticle design that overcome heterogeneous barriers to delivery are discussed, arguing that intelligent nanoparticles design can improve efficacy in general delivery applications while enabling tailored designs for precision applications, thereby ultimately improving patient outcome overall.
Abstract
In recent years, the development of nanoparticles has expanded into a broad range of clinical applications. Nanoparticles have been developed to overcome the limitations of free therapeutics and navigate biological barriers - systemic, microenvironmental and cellular - that are heterogeneous across patient populations and diseases. Overcoming this patient heterogeneity has also been accomplished through precision therapeutics, in which personalized interventions have enhanced therapeutic efficacy. However, nanoparticle development continues to focus on optimizing delivery platforms with a one-size-fits-all solution. As lipid-based, polymeric and inorganic nanoparticles are engineered in increasingly specified ways, they can begin to be optimized for drug delivery in a more personalized manner, entering the era of precision medicine. In this Review, we discuss advanced nanoparticle designs utilized in both non-personalized and precision applications that could be applied to improve precision therapies. We focus on advances in nanoparticle design that overcome heterogeneous barriers to delivery, arguing that intelligent nanoparticle design can improve efficacy in general delivery applications while enabling tailored designs for precision applications, thereby ultimately improving patient outcome overall.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Biomedical applications of multifunctional magnetoelectric nanoparticles.

TL;DR: Advances in nanotechnology are impacting biomedicine with the potential to improve disease diagnosis, enhance targeted drug delivery, refine imaging of therapeutic responses, control cell and tissue responses, and guide resection.
Journal ArticleDOI

PEGylated Polymer–Lipid Hybrid Nanoparticles to Enhance In Vivo Exposure and Uptake of Repaglinide in Brain Cells to Treat Diabetes-Linked Neurodegenerative Disorders

TL;DR: In this paper , the authors developed and evaluated PEGylated nanocarriers (PLHNPs) for oral delivery of Repaglinide (REP) in the treatment of diabetes mellitus (DM)-linked neurodegenerative disorders.
Journal ArticleDOI

Studying delivery of neuroprotective gabapentin drug by gold nanoparticles using a laser beam affecting surface plasmon resonance

TL;DR: In this article, the effects of time and intensity of irradiation on the UV-VIS spectrum of Au NPs were studied by using convergent green and blue lasers and effects of the irradiated light-intensity are investigated.
References
More filters
Journal ArticleDOI

Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness

TL;DR: It is found that intraflagellar transport 20 mediates the ability of Ror2 signaling to induce the invasiveness of tumors that lack primary cilia, and IFT20 regulates the nucleation of Golgi-derived microtubules by affecting the GM130-AKAP450 complex.
Journal ArticleDOI

Double-slit photoelectron interference in strong-field ionization of the neon dimer.

TL;DR: The authors show the double-slit interference effect in the strong-field ionization of neon dimers by employing COLTRIMS method to record the momentum distribution of the photoelectrons in the molecular frame.
Journal ArticleDOI

Principles of nanoparticle design for overcoming biological barriers to drug delivery

TL;DR: By successively addressing each of the biological barriers that a particle encounters upon intravenous administration, innovative design features can be rationally incorporated that will create a new generation of nanotherapeutics, realizing a paradigmatic shift in nanoparticle-based drug delivery.
Journal ArticleDOI

A New Initiative on Precision Medicine

TL;DR: A research initiative that aims to accelerate progress toward a new era of precision medicine, with a near-term focus on cancers and a longer-term aim to generate knowledge applicable to the whole range of health and disease.
Related Papers (5)