scispace - formally typeset
Open AccessJournal ArticleDOI

Immunogenic and tolerogenic cell death

TLDR
A central problem in immunology is to understand how the immune system determines whether cell death is immunogenic, tolerogenic or 'silent', which can result in autoimmunity.
Abstract
The immune system is routinely exposed to dead cells during normal cell turnover, injury and infection. Mechanisms must exist to discriminate between different forms of cell death in order to correctly eliminate pathogens and promote healing while avoiding responses to self, which can result in autoimmunity. However, an effective response against host tissue is also often needed to eliminate tumors following treatment with chemotherapeutic agents that trigger tumor cell death. Consequently, a central problem in immunology is to understand how the immune system determines whether cell death is immunogenic, tolerogenic or 'silent'.

read more

Citations
More filters
Journal ArticleDOI

Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

Lorenzo Galluzzi, +186 more
TL;DR: The Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives.
Journal ArticleDOI

Immunogenic Cell Death in Cancer Therapy

TL;DR: It is postulate that ICD constitutes a prominent pathway for the activation of the immune system against cancer, which in turn determines the long-term success of anticancer therapies and its subversion by pathogens.
Journal ArticleDOI

Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012

TL;DR: A functional classification of cell death subroutines is proposed that applies to both in vitro and in vivo settings and includes extrinsic apoptosis, caspase-dependent or -independent intrinsic programmed cell death, regulated necrosis, autophagic cell death and mitotic catastrophe.
Journal ArticleDOI

Immunogenic cell death and DAMPs in cancer therapy.

TL;DR: The role of endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) in regulating the immunogenicity of dying cancer cells and the effect of therapy-resistant cancer microevolution on ICD are discussed.
Journal ArticleDOI

Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation

TL;DR: The microenvironment of solid tumors is characterized by a reactive stroma with an abundance of inflammatory mediators and leukocytes, dysregulated vessels and proteolytic enzymes, which makes TAM an attractive target of novel biological therapies of tumors.
References
More filters
Journal ArticleDOI

Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics.

TL;DR: Apoptosis seems to be involved in cell turnover in many healthy adult tissues and is responsible for focal elimination of cells during normal embryonic development, and participates in at least some types of therapeutically induced tumour regression.
Journal ArticleDOI

Apoptosis in the pathogenesis and treatment of disease

TL;DR: In multicellular organisms, homeostasis is maintained through a balance between cell proliferation and cell death, and recent evidence suggests that alterations in cell survival contribute to the pathogenesis of a number of human diseases.
Journal ArticleDOI

Gout-associated uric acid crystals activate the NALP3 inflammasome

TL;DR: It is shown that MSU and CPPD engage the caspase-1-activating NALP3 (also called cryopyrin) inflammasome, resulting in the production of active interleukin (IL)-1β and IL-18 in mice deficient in the IL-1β receptor.
Journal ArticleDOI

The Danger Model: A Renewed Sense of Self

TL;DR: A model of immunity based on the idea that the immune system is more concerned with entities that do damage than with those that are foreign is outlined.
Journal ArticleDOI

Release of chromatin protein HMGB1 by necrotic cells triggers inflammation

TL;DR: It is reported that Hmgb1-/- necrotic cells have a greatly reduced ability to promote inflammation, which proves that the release of HMGB1 can signal the demise of a cell to its neighbours, and cells undergoing apoptosis are programmed to withhold the signal that is broadcast by cells that have been damaged or killed by trauma.
Related Papers (5)