scispace - formally typeset
Open AccessJournal ArticleDOI

Integrating mechanisms of pulmonary fibrosis

Thomas A. Wynn
- 04 Jul 2011 - 
- Vol. 208, Iss: 7, pp 1339-1350
Reads0
Chats0
TLDR
Pulmonary fibrosis is a complex and heterogeneous disease; a more detailed and integrated understanding of the cellular and molecular mechanisms influencing its pathogenesis will aid the design of new therapies.
Abstract
Pulmonary fibrosis is a highly heterogeneous and lethal pathological process with limited therapeutic options. Although research on the pathogenesis of pulmonary fibrosis has frequently focused on the mechanisms that regulate the proliferation, activation, and differentiation of collagen-secreting myofibroblasts, recent studies have identified new pathogenic mechanisms that are critically involved in the initiation and progression of fibrosis in a variety of settings. A more detailed and integrated understanding of the cellular and molecular mechanisms of pulmonary fibrosis could help pave the way for effective therapeutics for this devastating and complex disease.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Mechanisms of fibrosis: therapeutic translation for fibrotic disease

TL;DR: How cell-intrinsic changes in important structural cells can perpetuate the fibrotic response by regulating the differentiation, recruitment, proliferation and activation of extracellular matrix–producing myofibroblasts is described.
Journal ArticleDOI

The pathogenesis of cardiac fibrosis

TL;DR: Both experimental and clinical evidence suggests that cardiac fibrotic alterations may be reversible, and understanding the mechanisms responsible for initiation, progression, and resolution of cardiac fibrosis is crucial to design anti-fibrotic treatment strategies for patients with heart disease.
Journal ArticleDOI

Fibrosis — A Common Pathway to Organ Injury and Failure

TL;DR: The mechanisms underlying fibrosis and approaches to therapy are reviewed and fibrotic tissue becomes excessive, it can have diverse pathophysiological effects on a number of organ systems.
References
More filters
Journal ArticleDOI

Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells.

TL;DR: It is shown that IL-6, an acute phase protein induced during inflammation, completely inhibits the generation of Foxp3+ Treg cells induced by TGF-β, and the data demonstrate a dichotomy in thegeneration of pathogenic (TH17) T cells that induce autoimmunity and regulatory (Foxp3+) T Cells that inhibit autoimmune tissue injury.
Journal ArticleDOI

IL-23 drives a pathogenic T cell population that induces autoimmune inflammation

TL;DR: Using passive transfer studies, it is confirmed that these IL-23–dependent CD4+ T cells are highly pathogenic and essential for the establishment of organ-specific inflammation associated with central nervous system autoimmunity.
Journal ArticleDOI

A role for mitochondria in NLRP3 inflammasome activation

TL;DR: It is shown that mitophagy/autophagy blockade leads to the accumulation of damaged, ROS-generating mitochondria, and this in turn activates the NLRP3 inflammasome, and may explain the frequent association of mitochondrial damage with inflammatory diseases.
Journal ArticleDOI

Complex networks orchestrate epithelial–mesenchymal transitions

TL;DR: Understanding how mesenchymal cells arise from an epithelial default status will also have a strong impact in unravelling the mechanisms that control fibrosis and cancer progression.
Journal ArticleDOI

IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines

TL;DR: A member of theIL-1 family, IL-33, which mediates its biological effects via IL-1 receptor ST 2, activates NF-kappaB and MAP kinases, and drives production of T(H)2-associated cytokines from in vitro polarized T( H)2 cells is reported.
Related Papers (5)