scispace - formally typeset
Open Access

Mutational heterogeneity in cancer and the search for new cancer genes

TLDR
The MutSigCV method as mentioned in this paper applies mutational heterogeneity to exome sequences from 3,083 tumour-normal pairs and discovers extraordinary variation in mutation frequency and spectrum within cancer types, which sheds light on mutational processes and disease aetiology.
Abstract
Major international projects are underway that are aimed at creating a comprehensive catalogue of all the genes responsible for the initiation and progression of cancer. These studies involve the sequencing of matched tumour–normal samples followed by mathematical analysis to identify those genes in which mutations occur more frequently than expected by random chance. Here we describe a fundamental problem with cancer genome studies: as the sample size increases, the list of putatively significant genes produced by current analytical methods burgeons into the hundreds. The list includes many implausible genes (such as those encoding olfactory receptors and the muscle protein titin), suggesting extensive false-positive findings that overshadow true driver events. We show that this problem stems largely from mutational heterogeneity and provide a novel analytical methodology, MutSigCV, for resolving the problem. We apply MutSigCV to exome sequences from 3,083 tumour–normal pairs and discover extraordinary variation in mutation frequency and spectrum within cancer types, which sheds light on mutational processes and disease aetiology, and in mutation frequency across the genome, which is strongly correlated with DNA replication timing and also with transcriptional activity. By incorporating mutational heterogeneity into the analyses, MutSigCV is able to eliminate most of the apparent artefactual findings and enable the identification of genes truly associated with cancer.

read more

Citations
More filters
Journal ArticleDOI

Signatures of mutational processes in human cancer

Ludmil B. Alexandrov, +84 more
- 22 Aug 2013 - 
TL;DR: It is shown that hypermutation localized to small genomic regions, ‘kataegis’, is found in many cancer types, and this results reveal the diversity of mutational processes underlying the development of cancer.
Journal Article

The Cancer Genome Atlas Pan-Cancer analysis project

Kyle Chang, +337 more
- 01 Sep 2013 - 
TL;DR: The Cancer Genome Atlas (TCGA) Research Network has profiled and analyzed large numbers of human tumors to discover molecular aberrations at the DNA, RNA, protein and epigenetic levels as mentioned in this paper.
Journal Article

Patterns of Somatic Mutation in Human Cancer Genomes

TL;DR: In this paper, the coding exons of the family of 518 protein kinases were sequenced in 210 cancers of diverse histological types to explore the nature of the information that will be derived from cancer genome sequencing.
References
More filters
Journal ArticleDOI

Controlling the false discovery rate: a practical and powerful approach to multiple testing

TL;DR: In this paper, a different approach to problems of multiple significance testing is presented, which calls for controlling the expected proportion of falsely rejected hypotheses -the false discovery rate, which is equivalent to the FWER when all hypotheses are true but is smaller otherwise.
Journal ArticleDOI

The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data

TL;DR: The GATK programming framework enables developers and analysts to quickly and easily write efficient and robust NGS tools, many of which have already been incorporated into large-scale sequencing projects like the 1000 Genomes Project and The Cancer Genome Atlas.
Journal ArticleDOI

A method and server for predicting damaging missense mutations.

TL;DR: A new method and the corresponding software tool, PolyPhen-2, which is different from the early tool polyPhen1 in the set of predictive features, alignment pipeline, and the method of classification is presented and performance, as presented by its receiver operating characteristic curves, was consistently superior.

Learning parts of objects by non-negative matrix factorization

D. D. Lee
TL;DR: In this article, non-negative matrix factorization is used to learn parts of faces and semantic features of text, which is in contrast to principal components analysis and vector quantization that learn holistic, not parts-based, representations.
Journal ArticleDOI

Human papillomavirus is a necessary cause of invasive cervical cancer worldwide.

TL;DR: The presence of HPV in virtually all cervical cancers implies the highest worldwide attributable fraction so far reported for a specific cause of any major human cancer, and the rationale for HPV testing in addition to, or even instead of, cervical cytology in routine cervical screening.
Related Papers (5)

Mutational heterogeneity in cancer and the search for new cancer-associated genes

Michael S. Lawrence, +96 more
- 11 Jul 2013 -