scispace - formally typeset
Journal ArticleDOI

Perpendicular-anisotropy CoFeB-MgO magnetic tunnel junctions with a MgO/CoFeB/Ta/CoFeB/MgO recording structure

TLDR
In this article, the authors investigated a recording structure consisting of two CoFeB-MgO interfaces, MgO/CoFeB (1.6 nm)/Ta (0.4 n) with a recording size of 70 nm.
Abstract
We investigated perpendicular CoFeB-MgO magnetic tunnel junctions (MTJs) with a recording structure consisting of two CoFeB-MgO interfaces, MgO/CoFeB (1.6 nm)/Ta (0.4 nm)/CoFeB (1.0 nm)/MgO. Thermal stability factor of MTJ with the structure having junction size of 70 nmφ was increased by a factor of 1.9 from the highest value of perpendicular MTJs with single CoFeB-MgO interface having the same device structure. On the other hand, intrinsic critical current for spin transfer torque switching of the double- and single-interface MTJs was comparable.

read more

Citations
More filters
Journal ArticleDOI

Temperature dependence of the energy barrier in X/1X nm shape-anisotropy magnetic tunnel junctions

TL;DR: In this paper, the scaling relationship between the energy barrier and spontaneous magnetization in shape-anisotropy magnetic tunnel junctions is well described by a model assuming the dominant contribution of shape anisotropic to energy barrier.
Journal ArticleDOI

Simulation of Strain-Assisted Switching in Synthetic Antiferromagnetic Free Layer-Based Magnetic Tunnel Junction

TL;DR: In this paper, the authors performed macrospin simulations on a magnetic tunnel junction structure with perpendicular magnetic anisotropy, in which the conventional free layer is substituted with synthetic antiferromagnetic free layers to improve the thermal stability.
Proceedings ArticleDOI

Challenges toward Low-Power SOT-MRAM

TL;DR: In this paper, the authors present the recent progress on SOT-MRAM exploration of CMOS compatible high spin-Hall conductivity materials and structures, which is considered to be one of the promising candidates for next-generation low power, high speed and non-volatile embedded cache memory applications.
Journal ArticleDOI

Design of an area and energy-efficient last-level cache memory using STT-MRAM

TL;DR: The GA-STT-MRAM proves to be a more promising candidate to replace conventional semiconductor based LLC for next-generation energy-efficient microprocessors having on-chip non-volatility.
References
More filters
Journal ArticleDOI

A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction

TL;DR: Inter interfacial perpendicular anisotropy between the ferromagnetic electrodes and the tunnel barrier of the MTJ is used by employing the material combination of CoFeB-MgO, a system widely adopted to produce a giant tunnel magnetoresistance ratio in MTJs with in-plane an isotropy.
Journal ArticleDOI

Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions

TL;DR: A giant MR ratio up to 180% at room temperature in single-crystal Fe/MgO/Fe MTJs is reported, indicating that coherency of wave functions is conserved across the tunnel barrier.
Journal ArticleDOI

Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers

TL;DR: Sputter-deposited polycrystalline MTJs grown on an amorphous underlayer, but with highly oriented MgO tunnel barriers and CoFe electrodes, exhibit TMR values of up to ∼220% at room temperature and ∼300% at low temperatures, which will accelerate the development of new families of spintronic devices.
Journal ArticleDOI

230% room temperature magnetoresistance in CoFeB/MgO/CoFeB magnetic tunnel junctions

TL;DR: The magnetoresistance ratio of 230% at room temperature is reported in spin-valve type magnetic tunnel junctions using MgO barrier layer and amorphous CoFeB ferromagnetic electrodes fabricated on thermally oxidized Si substrates.
Journal ArticleDOI

Systematic variation of the strength and oscillation period of indirect magnetic exchange coupling through the 3d, 4d, and 5d transition metals.

TL;DR: The exchange-coupling strength is found to increase systematically from the 5d to 4d to 3d metals and exponentially with increasing number of d electrons along each period.
Related Papers (5)