scispace - formally typeset
Journal ArticleDOI

Perpendicular-anisotropy CoFeB-MgO magnetic tunnel junctions with a MgO/CoFeB/Ta/CoFeB/MgO recording structure

Reads0
Chats0
TLDR
In this article, the authors investigated a recording structure consisting of two CoFeB-MgO interfaces, MgO/CoFeB (1.6 nm)/Ta (0.4 n) with a recording size of 70 nm.
Abstract
We investigated perpendicular CoFeB-MgO magnetic tunnel junctions (MTJs) with a recording structure consisting of two CoFeB-MgO interfaces, MgO/CoFeB (1.6 nm)/Ta (0.4 nm)/CoFeB (1.0 nm)/MgO. Thermal stability factor of MTJ with the structure having junction size of 70 nmφ was increased by a factor of 1.9 from the highest value of perpendicular MTJs with single CoFeB-MgO interface having the same device structure. On the other hand, intrinsic critical current for spin transfer torque switching of the double- and single-interface MTJs was comparable.

read more

Citations
More filters
Journal ArticleDOI

Perpendicular magnetic anisotropy in composite MgO/CoFeB/Ta/[Co/Pd]n structures

TL;DR: In this paper, the impact of a non-magnetic Ta spacer layer on the perpendicular magnetic anisotropy of composite magnetic structures constituted by ultra-thin Co/Pd multilayers (MLs) and MgO/CoFeB was studied.
Journal ArticleDOI

CRP: Conditional Replacement Policy for Reliability Enhancement of STT-MRAM Caches

TL;DR: An error-aware cache replacement policy, namely, conditional replacement policy (CRP), is proposed, to improve the reliability of STT-MRAM caches by decreasing the rate of both read disturbance and write failure.
Patent

Magnetic memory cells, methods of fabrication, semiconductor devices, memory systems, and electronic systems

TL;DR: In this paper, a getter material proximate to the secondary oxide region is formulated and configured to remove oxygen from the SOP, reducing an oxygen concentration and an electrical resistance of the secondary SOP.
Journal ArticleDOI

Properties of perpendicular-anisotropy magnetic tunnel junctions fabricated over the bottom electrode contact

TL;DR: In this paper, a polish-on-off-axis magnetic tunnel junction (MTJ) was constructed on four substrate geometries, i.e., directly on the bottom electrode contact, directly off the axis of the bottom electrodes contact, on the axis with a polished bottom electrode, and off-axis with a polishing bottom electrode.
References
More filters
Journal ArticleDOI

A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction

TL;DR: Inter interfacial perpendicular anisotropy between the ferromagnetic electrodes and the tunnel barrier of the MTJ is used by employing the material combination of CoFeB-MgO, a system widely adopted to produce a giant tunnel magnetoresistance ratio in MTJs with in-plane an isotropy.
Journal ArticleDOI

Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions

TL;DR: A giant MR ratio up to 180% at room temperature in single-crystal Fe/MgO/Fe MTJs is reported, indicating that coherency of wave functions is conserved across the tunnel barrier.
Journal ArticleDOI

Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers

TL;DR: Sputter-deposited polycrystalline MTJs grown on an amorphous underlayer, but with highly oriented MgO tunnel barriers and CoFe electrodes, exhibit TMR values of up to ∼220% at room temperature and ∼300% at low temperatures, which will accelerate the development of new families of spintronic devices.
Journal ArticleDOI

230% room temperature magnetoresistance in CoFeB/MgO/CoFeB magnetic tunnel junctions

TL;DR: The magnetoresistance ratio of 230% at room temperature is reported in spin-valve type magnetic tunnel junctions using MgO barrier layer and amorphous CoFeB ferromagnetic electrodes fabricated on thermally oxidized Si substrates.
Journal ArticleDOI

Systematic variation of the strength and oscillation period of indirect magnetic exchange coupling through the 3d, 4d, and 5d transition metals.

TL;DR: The exchange-coupling strength is found to increase systematically from the 5d to 4d to 3d metals and exponentially with increasing number of d electrons along each period.
Related Papers (5)