scispace - formally typeset
Search or ask a question

Showing papers on "Chemical vapor deposition published in 2004"


Journal ArticleDOI
09 Apr 2004-Science
TL;DR: In this article, the authors used a rotating spindle to spin fibers and ribbons of carbon nanotubes directly from the chemical vapor deposition (CVD) synthesis zone of a furnace using a liquid source of carbon and an iron nanocatalyst.
Abstract: Many routes have been developed for the synthesis of carbon nanotubes, but their assembly into continuous fibers has been achieved only through postprocessing methods. We spun fibers and ribbons of carbon nanotubes directly from the chemical vapor deposition (CVD) synthesis zone of a furnace using a liquid source of carbon and an iron nanocatalyst. This process was realized through the appropriate choice of reactants, control of the reaction conditions, and continuous withdrawal of the product with a rotating spindle used in various geometries. This direct spinning from a CVD reaction zone is extendable to other types of fiber and to the spin coating of rotating objects in general.

1,330 citations


Journal ArticleDOI
TL;DR: In this paper, single-crystal ZnO nanowires are synthesized using a vapor trapping chemical vapor deposition method and configured as field effect transistors, and electrical transport studies show n-type semiconducting behavior with a carrier concentration of ∼107cm−1 and an electron mobility of ∼17cm2∕Vs.
Abstract: Single-crystal ZnO nanowires are synthesized using a vapor trapping chemical vapor deposition method and configured as field-effect transistors. Electrical transport studies show n-type semiconducting behavior with a carrier concentration of ∼107cm−1 and an electron mobility of ∼17cm2∕Vs. The contact Schottky barrier between the Au/Ni electrode and nanowire is determined from the temperature dependence of the conductance. Thermionic emission is found to dominate the transport mechanism. The effect of oxygen adsorption on electron transport through the nanowires is investigated. The sensitivity to oxygen is demonstrated to be higher with smaller radii nanowires. Moreover, the oxygen detection sensitivity can be modulated by the gate voltage. These results indicate that ZnO holds high potential for nanoscale sensing applications.

811 citations


Journal ArticleDOI
TL;DR: In this article, the authors describe the use of hydrogenated amorphous silicon (a-Si:H) and hydrogenated micro-crystalline silicon (μc-Si-H) thin films (layers), both deposited at low temperatures (200°C) by plasma-assisted chemical vapour deposition (PECVD), from a mixture of silane and hydrogen.
Abstract: This paper describes the use, within p–i–n- and n–i–p-type solar cells, of hydrogenated amorphous silicon (a-Si:H) and hydrogenated microcrystalline silicon (μc-Si:H) thin films (layers), both deposited at low temperatures (200°C) by plasma-assisted chemical vapour deposition (PECVD), from a mixture of silane and hydrogen. Optical and electrical properties of the i-layers are described. These properties are linked to the microstructure and hence to the i-layer deposition rate, that in turn, affects throughput in production. The importance of contact and reflection layers in achieving low electrical and optical losses is explained, particularly for the superstrate case. Especially the required properties for the transparent conductive oxide (TCO) need to be well balanced in order to provide, at the same time, for high electrical conductivity (preferably by high electron mobility), low optical absorption and surface texture (for low optical losses and pronounced light trapping). Single-junction amorphous and microcrystalline p–i–n-type solar cells, as fabricated so far, are compared in their key parameters (Jsc, FF, Voc) with the [theoretical] limiting values. Tandem and multijunction cells are introduced; the μc-Si: H/a-Si: H or [micromorph] tandem solar cell concept is explained in detail, and recent results obtained here are listed and commented. Factors governing the mass-production of thin-film silicon modules are determined both by inherent technical reasons, described in detail, and by economic considerations. The cumulative effect of these factors results in distinct efficiency reductions from values of record laboratory cells to statistical averages of production modules. Finally, applications of thin-film silicon PV modules, especially in building-integrated PV (BIPV) are shown. In this context, the energy yields of thin-film silicon modules emerge as a valuable gauge for module performance, and compare very favourably with those of other PV technologies. Copyright © 2004 John Wiley & Sons, Ltd.

718 citations


Journal ArticleDOI
TL;DR: In this paper, high-resolution transmission electron microscopy studies showed that ZnO nanorods are single crystals and that they grow along the c axis of the crystal plane.
Abstract: Uniformly distributed ZnO nanorods have been grown by plasma-enhanced chemical vapor deposition using a two-step process. By controlling the oxygen content in the gas mixture during the nucleation and growth steps, no catalyst is required for the formation of ZnO nanorods. High-resolution transmission electron microscopy studies show that ZnO nanorods are single crystals and that they grow along the c axis of the crystal plane. Alignment of these nanorods with respect to the substrates depends on the lattice mismatch between ZnO and the substrate, the surface electric field, and the amount of defects in the starting nuclei. Room-temperature photoluminescence measurements of these ZnO nanorods have shown ultraviolet peaks at 380 nm with a full width at half-maximum of 106 meV, which are comparable to those found in high-quality ZnO films. Photoluminescence measurements of annealed ZnO nanorods in hydrogen and oxygen atmospheres indicate that the origins of green emission are oxygen vacancies and zinc inter...

667 citations


Journal ArticleDOI
TL;DR: In this article, an n-type ZnO and p-type AlGaN were used for homojunction light-emitting diodes (LEDs) and laser Diodes.
Abstract: Both n-type and p-type ZnO will be required for development of homojunction light-emitting diodes (LEDs) and laser diodes (LDs). It is easy to obtain strong n-type ZnO, but very difficult to create consistent, reliable, high-conductivity p-type material. The most natural choice of an acceptor dopant is N, substituting for O, and indeed several groups have been able to obtain p-type material by such doping. Surprisingly, however, other groups have also been successful with P and As, elements with much larger ionic radii than that of O. Although ZnO substrates are now available, most of the epitaxial p-type layers so far have been grown on sapphire, or other poorly-matched materials. The lowest p-type resistivity obtained up to now is about 0.5 Ω-cm, which should be sufficient for LED fabrication. In spite of the present availability of p-type ZnO, very few homojunction LEDs have been reported so far, to our knowledge; however, several good heterojunction LEDs have been demonstrated, fabricated with p-type layers composed of other materials. One such structure, with fairly strong 389-nm emission at 300 K, involves n-type ZnO and p-type AlGaN, grown on an SiC substrate. Also, an N + -ion implanted ZnO layer, deposited by chemical vapor deposition on Al 2 O 3 , exhibits 388-nm emission at 300 K and could be economical to produce.

528 citations


Journal ArticleDOI
TL;DR: The use of metal–organic chemical vapour deposition (MOCVD) and appropriate substrate selection is demonstrated to control the crystallographic growth directions of high-density arrays of gallium nitride nanowires with distinct geometric and physical properties.
Abstract: Single-crystalline, one-dimensional semiconductor nanostructures are considered to be one of the critical building blocks for nanoscale optoelectronics1 Elucidation of the vapour–liquid–solid growth mechanism2 has already enabled precise control over nanowire position and size1,3,4,5,6,7,8, yet to date, no reports have demonstrated the ability to choose from different crystallographic growth directions of a nanowire array Control over the nanowire growth direction is extremely desirable, in that anisotropic parameters such as thermal and electrical conductivity, index of refraction, piezoelectric polarization, and bandgap may be used to tune the physical properties of nanowires made from a given material Here we demonstrate the use of metal–organic chemical vapour deposition (MOCVD) and appropriate substrate selection to control the crystallographic growth directions of high-density arrays of gallium nitride nanowires with distinct geometric and physical properties Epitaxial growth of wurtzite gallium nitride on (100) γ-LiAlO2 and (111) MgO single-crystal substrates resulted in the selective growth of nanowires in the orthogonal [110] and [001] directions, exhibiting triangular and hexagonal cross-sections and drastically different optical emission The MOCVD process is entirely compatible with the current GaN thin-film technology, which would lead to easy scale-up and device integration

487 citations


Journal ArticleDOI
Huan Liu1, Lin Feng1, Jin Zhai1, Lei Jiang1, Daoben Zhu1 
02 Jun 2004-Langmuir
TL;DR: A superhydrophobic ZnO thin film fabricated by the Au-catalyzed chemical vapor deposition method shows good stability and durability and exhibits hierarchical structure with nanostructures on sub-microstructures.
Abstract: A superhydrophobic ZnO thin film was fabricated by the Au-catalyzed chemical vapor deposition method. The surface of the film exhibits hierarchical structure with nanostructures on sub-microstructures. The water contact angle (CA) was 164.3°, turning into a superhydrophilic one (CA < 5°) after UV illumination, which can be recovered through being placed in the dark or being heated. The film was attached tightly to the substrate, showing good stability and durability. The surface structures were characterized by scanning electron microscopy and atomic force microscopy.

469 citations



Journal ArticleDOI
TL;DR: The carbon nanosheets were synthesized on a variety of substrates by radio-frequency plasma-enhanced chemical vapor deposition without any catalyst or special substrate treatment.
Abstract: Free-standing graphite sheets with thickness less than 1nm, “carbon nanosheets,” were synthesized on a variety of substrates by radio-frequency plasma-enhanced chemical vapor deposition without any catalyst or special substrate treatment. The nanosheets consist of one to three graphene layers with a large smooth surface topography, standing roughly vertical to the substrate. Due to the atomic thickness and corrugated nature of nanosheets, low-energy vibrational modes are present in the Raman spectra. The low turn-on field of 4.7 V/μm for electron field emission suggests that the carbon nanosheets could be used as a potential edge emitter.

445 citations


Journal ArticleDOI
TL;DR: In this article, n-and p-type Ge nanowires were synthesized by a multistep process in which axial elongation, via vapor-liquid-solid (VLS) growth, and doping were accomplished in separate chemical vapor deposition steps.
Abstract: n- and p-type Ge nanowires were synthesized by a multistep process in which axial elongation, via vapor–liquid–solid (VLS) growth, and doping were accomplished in separate chemical vapor deposition steps. Intrinsic, single-crystal, Ge nanowires prepared by Au nanocluster-mediated VLS growth were surface-doped in situ using diborane or phosphine, and then radial growth of an epitaxial Ge shell was used to cap the dopant layer. Field-effect transistors prepared from these Ge nanowires exhibited on currents and transconductances up to 850 μA/μm and 4.9 μA/V, respectively, with device yields of >85%.

404 citations


Journal ArticleDOI
01 Jan 2004-Carbon
TL;DR: An ultrathin sheet-like carbon nanostructure, carbon nanosheet, has been effectively synthesized with CH4 diluted in H2 by an inductively coupled radio-frequency plasma enhanced chemical vapor deposition.

Journal ArticleDOI
TL;DR: In this paper, the growth mechanism of long and aligned single walled carbon nanotubes using a recently reported "fast heating" chemical vapor deposition (CVD) method is discussed.
Abstract: The growth mechanism of long and aligned single walled carbon nanotubes using a recently reported “fast heating” chemical vapor deposition (CVD) method is discussed. The effect of heating speed at the initial stage of the CVD process has been systematically studied, and a “kite-mechanism” for the nanotube growth is proposed. The understanding of the growth mechanism would enable us to design future experiments to obtain better control of the morphology of the produced nanotubes.

Journal ArticleDOI
TL;DR: In this paper, a chemical vapor deposition (CVD) process modified with vapor trapping method has been used to synthesize n-type ZnO nanowires with high carrier concentration without incorporating impurity dopants.
Abstract: A chemical vapor deposition (CVD) process modified with vapor trapping method has been used to synthesize n-type ZnO nanowires with high carrier concentration without incorporating impurity dopants. With this method, a spatial variation of synthesis condition was created and the donors were directly introduced into the nanowires during the synthesis process. Electron microscopy and electrical transport studies show that nanowires having distinct morphologies and electrical properties were obtained at different locations in the CVD system. The vapor trapping method elucidates the effect of synthesis conditions, and provides an approach to control nanowire growth for tailorable device applications.

Journal ArticleDOI
TL;DR: In this article, two-dimensional carbon nanostructures (carbon nanowalls) were fabricated using capacitively coupled radio-frequency plasmaenhanced chemical vapor deposition assisted by H radical injection.
Abstract: Two-dimensional carbon nanostructures (carbon nanowalls) were fabricated using capacitively coupled radio-frequency plasma-enhanced chemical vapor deposition assisted by H radical injection. Carbon nanowalls were grown on Si, SiO2, and sapphire substrates without catalyst, and independent of substrate materials. Correlation between carbon nanowall growth and fabrication conditions, such as carbon source gases was investigated. In the case using C2F6/H2 system, aligned carbon nanowalls were grown vertically on the substrate, while carbon nanowalls grown using CH4/H2 system were waved and thin (<10 nm). In the case of the deposition without H radical injection, on the other hand, carbon nanowalls were not fabricated.


Journal ArticleDOI
TL;DR: The result suggests that surface effects could be dominant over the "bulk" properties of small diameter wires.
Abstract: Germanium nanowires (GeNWs) with p- and n-dopants were synthesized by chemical vapor deposition (CVD) and were used to construct complementary field-effect transistors (FETs). Electrical transport and X-ray photoelectron spectroscopy (XPS) data are correlated to glean the effects of Ge surface chemistry to the electrical characteristics of GeNWs. Large hysteresis due to water molecules strongly bound to GeO(2) on GeNWs is revealed. Different oxidation behavior and hysteresis characteristics and opposite band bending due to Fermi level pinning by interface states between Ge and surface oxides are observed for p- and n-type GeNWs. Vacuum annealing above 400 degrees C is used to remove surface oxides and eliminate hysteresis in GeNW FETs. High-kappa dielectric HfO(2) films grown on clean GeNW surfaces by atomic layer deposition (ALD) using an alkylamide precursor is effective in serving as the first layer of surface passivation. Lastly, the depletion length along the radial direction of nanowires is evaluated. The result suggests that surface effects could be dominant over the "bulk" properties of small diameter wires.

Journal ArticleDOI
TL;DR: In this paper, the in situ generation of the Au clusters as well as the growth parameters of the whiskers are discussed, and the experimentally observed radius dependence of the growth velocity of the nanowiskers is opposite to what is known for VLS growth based on chemical vapor deposition.
Abstract: Silicon nanowhiskers in the diameter range of 70 to 200 nm were grown on 〈111〉-oriented silicon substrates by molecular-beam epitaxy. Assuming the so-called “vapor–liquid–solid” (VLS) growth process to operate, we initiated the growth by using small clusters of gold at the silicon interface as seeds. The in situ generation of the Au clusters as well as the growth parameters of the whiskers are discussed. The experimentally observed radius dependence of the growth velocity of the nanowhiskers is opposite to what is known for VLS growth based on chemical vapor deposition and can be explained by an ad-atom diffusion on the surface of the whiskers.

Journal ArticleDOI
TL;DR: In this article, the leakage current density of a TiO2 film with an equivalent oxide thickness of 1.0-1.5 nm was 10−6−10−8A∕cm2 at ± 1V.
Abstract: TiO2 thin films with high dielectric constants (83–100) were grown on a Ru electrode at a growth temperature of 250 °C using the atomic-layer deposition method. The as-deposited films were crystallized with rutile structure. Adoption of O3 with a very high concentration (400g∕m3) was crucial for obtaining the rutile phase and the high dielectric constant. The leakage current density of a TiO2 film with an equivalent oxide thickness of 1.0–1.5 nm was 10−6–10−8A∕cm2 at ±1V. All these electrical properties were obtained after limited postannealing where the annealing temperature was <500°C, which is crucial to the structural stability of the Ru electrode. Therefore, these TiO2 films are very promising as the capacitor dielectrics of dynamic random access memories. TiO2 films grown on a bare Si wafer or Pt electrode by the same process had anatase structure and a dielectric constant of ∼40.

Journal ArticleDOI
TL;DR: In this article, a polymer-assisted deposition (PAD) was proposed to grow metal-oxide films in large areas at low cost using a homogeneous distribution of metal precursors in the solution.
Abstract: Metal oxides are emerging as important materials for their versatile properties such as high-temperature superconductivity, ferroelectricity, ferromagnetism, piezoelectricity and semiconductivity. Metal-oxide films are conventionally grown by physical and chemical vapour deposition. However, the high cost of necessary equipment and restriction of coatings on a relatively small area have limited their potential applications. Chemical-solution depositions such as sol-gel are more cost-effective, but many metal oxides cannot be deposited and the control of stoichiometry is not always possible owing to differences in chemical reactivity among the metals. Here we report a novel process to grow metal-oxide films in large areas at low cost using polymer-assisted deposition (PAD), where the polymer controls the viscosity and binds metal ions, resulting in a homogeneous distribution of metal precursors in the solution and the formation of uniform metal-organic films. The latter feature makes it possible to grow simple and complex crack-free epitaxial metal-oxides.

Journal ArticleDOI
TL;DR: In this article, the size and structure of silicon nanocrystals were confirmed by high-resolution transmission electron microscopy and the photoluminescence peak energy as E(eV)=1.16+11.8∕d2 is evidence for the quantum confinement effect.
Abstract: Silicon nanocrystals were in situ grown in a silicon nitride film by plasma-enhanced chemical vapor deposition. The size and structure of silicon nanocrystals were confirmed by high-resolution transmission electron microscopy. Depending on the size, the photoluminescence of silicon nanocrystals can be tuned from the near infrared (1.38eV) to the ultraviolet (3.02eV). The fitted photoluminescence peak energy as E(eV)=1.16+11.8∕d2 is evidence for the quantum confinement effect in silicon nanocrystals. The results demonstrate that the band gap of silicon nanocrystals embedded in silicon nitride matrix was more effectively controlled for a wide range of luminescent wavelengths.

Posted Content
TL;DR: Germanium nanowires with p-and n-dopants were synthesized by chemical vapor deposition and used to construct complementary field effect transistors in this paper, where electrical transport and x-ray photoelectron spectroscopy data were correlated to glean the effects of Ge surface chemistry to the electrical characteristics of GeNWs.
Abstract: Germanium nanowires with p- and n-dopants were synthesized by chemical vapor deposition and used to construct complementary field effect transistors . Electrical transport and x-ray photoelectron spectroscopy data are correlated to glean the effects of Ge surface chemistry to the electrical characteristics of GeNWs. Large hysteresis due to water molecules strongly bound to GeO2 on GeNWs is revealed. Different oxidation behavior and hysteresis characteristics and opposite band bending due to Fermi level pinning by interface states between Ge and surface oxides are observed for p- and n-type GeNWs. Vacuum annealing above 400C is used to remove surface oxides and eliminate hysteresis in GeNW FETs. High-k dielectric HfO2 films grown on clean GeNW surfaces by atomic layer deposition (ALD) using an alkylamide precursor is effective serving as the first layer of surface passivation. Lastly, the depletion length along the radial direction of nanowires is evaluated. The result suggests that surface effects could be dominant over the bulk properties of small diameter wires.

Patent
30 Aug 2004
TL;DR: In this paper, a method of forming (and apparatus for forming) refractory metal nitride layers (including silicon nitride layer), such as a tantalum (silicon) nitride barrier layer, on a substrate by using a vapor deposition process with a refined metal precursor compound, a disilazane, and an optional silicon precursor compound.
Abstract: A method of forming (and apparatus for forming) refractory metal nitride layers (including silicon nitride layers), such as a tantalum (silicon) nitride barrier layer, on a substrate by using a vapor deposition process with a refractory metal precursor compound, a disilazane, and an optional silicon precursor compound.

Journal ArticleDOI
TL;DR: In this paper, the authors reported unambiguous evidence for superconductivity in a heavily boron-doped diamond thin film grown by microwave plasma-assisted chemical vapor deposition (MPCVD).
Abstract: We report unambiguous evidence for superconductivity in a heavily boron-doped diamond thin film grown by microwave plasma-assisted chemical vapor deposition (MPCVD). An advantage of the MPCVD-deposited diamond is that it can contain boron at high concentration, especially in (111)-oriented films. Superconducting transition temperatures are determined by transport measurements to be 7.4 K for TC onset and 4.2 K for zero resistance. The upper critical field is estimated to be 7 T. Magnetization as a function of magnetic fields shows typical type-II superconducting properties.

Patent
27 Sep 2004
TL;DR: In this article, a method for thin film deposition on solid substrates was proposed, where thin film was used to fill narrow trenches with low-k dielectric material while at the same time avoiding deposition on the surface area outside of the trenches.
Abstract: This invention relates to materials and processes for thin film deposition on solid substrates. Silica/alumina nanolaminates were deposited on heated substrates by the reaction of an aluminum-containing compound with a silanol. The nanolaminates have very uniform thickness and excellent step coverage in holes with aspect ratios over 40:1. The films are transparent and good electrical insulators. This invention also relates to materials and processes for producing improved porous dielectric materials used in the insulation of electrical conductors in microelectronic devices, particularly through materials and processes for producing semi-porous dielectric materials wherein surface porosity is significantly reduced or removed while internal porosity is preserved to maintain a desired low-k value for the overall dielectric material. The invention can also be used to selectively fill narrow trenches with low-k dielectric material while at the same time avoiding deposition of any dielectric on the surface area outside of the trenches.

Journal ArticleDOI
TL;DR: In this paper, a template-and catalyst-free metalorganic chemical vapor deposition (MOCVD) method was used to synthesize anatase TiO2 nanorods.
Abstract: Well-aligned rutlie and anatase TiO2 nanorods as well as anatase TiO2 nanowalls have been synthesized using a template- and catalyst-free metalorganic chemical vapor deposition (MOCVD) method. Stru...

Patent
29 Apr 2004
TL;DR: In this paper, a pre-treatment step can maximize the available reactive sites prior to the treatment step, and purge steps can be greatly shortened and a number of runs can be conducted between cleaning steps to remove built-up deposition on the reactor walls.
Abstract: Protective layers are formed on a surface of an atomic layer deposition (ALD) or chemical vapor deposition (CVD) reactor. Parts defining a reaction space for an ALD or CVD reactor can be treated, in situ or ex situ, with chemicals that deactivate reactive sites on the reaction space surface(s). A pre-treatment step can maximize the available reactive sites prior to the treatment step. With reactive sites deactivated by adsorbed treatment reactant, during subsequent processing the reactant gases have reduced reactivity or deposition upon these treated surfaces. Accordingly, purge steps can be greatly shortened and a greater number of runs can be conducted between cleaning steps to remove built-up deposition on the reactor walls.

Journal ArticleDOI
TL;DR: In this paper, the onset of superconductivity in heavily boron-doped diamond synthesized by high pressure sintering was found to be 7.4K, which is higher than the reported value in ref(7) and well above helium liquid temperature.
Abstract: Diamond has always been adored as a jewel. Even more fascinating is its outstanding physical properties; it is the hardest material known in the world with the highest thermal conductivity. Meanwhile, when we turn to its electrical properties, diamond is a rather featureless electrical insulator. However, with boron doping, it becomes a p-type semiconductor, with boron acting as a charge acceptor. Therefore the recent news of superconductivity in heavily boron-doped diamond synthesized by high pressure sintering was received with considerable surprise. Opening up new possibilities for diamond-based electrical devices, a systematic investigation of these phenomena clearly needs to be achieved. Here we show unambiguous evidence of superconductivity in a diamond thin film deposited by a chemical vapor deposition (CVD) method. Furthermore the onset of the superconducting transition is found to be 7.4K, which is higher than the reported value in ref(7) and well above helium liquid temperature. This finding establishes the superconductivity to be a universal property of boron-doped diamond, demonstrating that device application is indeed a feasible challenge.

Journal ArticleDOI
TL;DR: In this paper, the structural and optical properties of Ge-based photodetectors operating in the low loss windows (1.3-1.6 μm) of silica fibers are investigated.
Abstract: Ge-based photodetectors operating in the low loss windows (1.3–1.6 μm) of silica fibers are highly desirable for the development of optical interconnections on silicon-on-insulator substrates. We have therefore investigated the structural and optical properties of Ge thick films grown directly onto Si(001) substrates using a production-compatible reduced pressure chemical vapor deposition system. We have first of all evidenced a Ge growth regime which is akin to a supply-limited one in the 400–750 °C temperature range (Ea=6.9 kcal mol−1). The thick Ge layers grown using a low-temperature/high-temperature approach are in a definite tensile-strain configuration, with a threading dislocation density for as-grown layers of the order of 9×108 cm−2 (annealed: <2×108 cm−2). The surface of those Ge thick layers is rather smooth, especially when considering the large lattice mismatch between Ge and Si. The root-mean-square roughness is indeed of the order of 0.6 nm (2 nm) only for as-grown (annealed) layers. A che...

Journal ArticleDOI
TL;DR: In this paper, chemical vapor deposition by Au-catalyzed decomposition of GeH4 has been used to grow Ge nanowires on single-crystal silicon, which can grow over the temperature range ∼320−380 °C under the con...
Abstract: Chemical vapor deposition by Au-catalyzed decomposition of GeH4 has been used to grow Ge nanowires on single-crystal silicon. The nanowires grow over the temperature range ∼320−380 °C under the con...

Journal ArticleDOI
TL;DR: In this article, the optical and electrical properties of single-crystalline silicon carbide nanowires (SiC NWs) were reported, which were fabricated by a chemical vapor deposition process, and had diameters of <100nm and lengths of several μm.
Abstract: We report on the optical and electrical transport properties of single-crystalline silicon carbide nanowires (SiC NWs). The NWs were fabricated by a chemical vapor deposition process, and had diameters of <100nm and lengths of several μm. X-ray diffraction and transmission electron microscopy analysis showed the single-crystalline nature of NWs with a growth direction of ⟨111⟩. Photoluminescence characterization showed blue emission at room temperature. The electrical measurements from a field effect transistor structure on individual NWs showed n-type semiconductor characteristics. The resistivity and estimated electron mobility on the NWs are 2.2×10−2Ωcm for 0V of gate voltage and 15cm2∕(Vs), respectively. Our low-resistivity SiC NWs could be applied to a high-temperature operation sensor and actuator due to its own excellent electrical and optical properties.