scispace - formally typeset
Search or ask a question

Showing papers on "Chromosome conformation capture published in 2012"


Journal ArticleDOI
17 May 2012-Nature
TL;DR: It is found that the boundaries of topological domains are enriched for the insulator binding protein CTCF, housekeeping genes, transfer RNAs and short interspersed element (SINE) retrotransposons, indicating that these factors may have a role in establishing the topological domain structure of the genome.
Abstract: The spatial organization of the genome is intimately linked to its biological function, yet our understanding of higher order genomic structure is coarse, fragmented and incomplete. In the nucleus of eukaryotic cells, interphase chromosomes occupy distinct chromosome territories, and numerous models have been proposed for how chromosomes fold within chromosome territories. These models, however, provide only few mechanistic details about the relationship between higher order chromatin structure and genome function. Recent advances in genomic technologies have led to rapid advances in the study of three-dimensional genome organization. In particular, Hi-C has been introduced as a method for identifying higher order chromatin interactions genome wide. Here we investigate the three-dimensional organization of the human and mouse genomes in embryonic stem cells and terminally differentiated cell types at unprecedented resolution. We identify large, megabase-sized local chromatin interaction domains, which we term 'topological domains', as a pervasive structural feature of the genome organization. These domains correlate with regions of the genome that constrain the spread of heterochromatin. The domains are stable across different cell types and highly conserved across species, indicating that topological domains are an inherent property of mammalian genomes. Finally, we find that the boundaries of topological domains are enriched for the insulator binding protein CTCF, housekeeping genes, transfer RNAs and short interspersed element (SINE) retrotransposons, indicating that these factors may have a role in establishing the topological domain structure of the genome.

5,774 citations


Journal ArticleDOI
17 May 2012-Nature
TL;DR: In addition to uncovering a new principle of cis-regulatory architecture of mammalian chromosomes, this study sets the stage for the full genetic dissection of the mouse X-inactivation centre.
Abstract: High-order chromatin folding in topologically associating domains has a critical role in proper long-range transcriptional control around the Xist locus, and presumably throughout the genome. The spatial organization of the genome is linked to biological function, and advances in genomic technologies are allowing the conformation of chromosomes to be assessed genome wide. Two groups present complementary papers on the subject. Bing Ren and colleagues use Hi-C, an adaption of the chromosome conformation capture (3C) technique, to investigate the three-dimensional organization of the human and mouse genomes in embryonic stem cells and terminally differentiated cell types. Large, megabase-sized chromatin interaction domains, termed topological domains, are found to be a pervasive and conserved feature of genome organization. Edith Heard and colleagues use chromosome conformation capture carbon-copy (5C) technology and high-resolution microscopy to obtain a high-resolution map of the chromosomal interactions over a large region of the mouse X chromosome, including the X-inactivation centre. A series of discrete topologically associating domains is revealed, as is a previously unknown long intergenic RNA with a potential regulatory role. In eukaryotes transcriptional regulation often involves multiple long-range elements and is influenced by the genomic environment1. A prime example of this concerns the mouse X-inactivation centre (Xic), which orchestrates the initiation of X-chromosome inactivation (XCI) by controlling the expression of the non-protein-coding Xist transcript. The extent of Xic sequences required for the proper regulation of Xist remains unknown. Here we use chromosome conformation capture carbon-copy (5C)2 and super-resolution microscopy to analyse the spatial organization of a 4.5-megabases (Mb) region including Xist. We discover a series of discrete 200-kilobase to 1 Mb topologically associating domains (TADs), present both before and after cell differentiation and on the active and inactive X. TADs align with, but do not rely on, several domain-wide features of the epigenome, such as H3K27me3 or H3K9me2 blocks and lamina-associated domains. TADs also align with coordinately regulated gene clusters. Disruption of a TAD boundary causes ectopic chromosomal contacts and long-range transcriptional misregulation. The Xist/Tsix sense/antisense unit illustrates how TADs enable the spatial segregation of oppositely regulated chromosomal neighbourhoods, with the respective promoters of Xist and Tsix lying in adjacent TADs, each containing their known positive regulators. We identify a novel distal regulatory region of Tsix within its TAD, which produces a long intervening RNA, Linx. In addition to uncovering a new principle of cis-regulatory architecture of mammalian chromosomes, our study sets the stage for the full genetic dissection of the X-inactivation centre.

2,627 citations


Journal ArticleDOI
03 Feb 2012-Cell
TL;DR: A high-resolution chromosomal contact map derived from a modified genome-wide chromosome conformation capture approach applied to Drosophila embryonic nuclei is presented, laying the foundation for detailed studies of chromosome structure and function in a genetically tractable system.

1,817 citations


Journal ArticleDOI
06 Sep 2012-Nature
TL;DR: In this paper, the authors applied chromosome conformation capture carbon copy (5C) to interrogate comprehensively interactions between transcription start sites (TSSs) and distal elements in 1% of the human genome representing the ENCODE pilot project regions.
Abstract: The vast non-coding portion of the human genome is full of functional elements and disease-causing regulatory variants. The principles defining the relationships between these elements and distal target genes remain unknown. Promoters and distal elements can engage in looping interactions that have been implicated in gene regulation. Here we have applied chromosome conformation capture carbon copy (5C) to interrogate comprehensively interactions between transcription start sites (TSSs) and distal elements in 1% of the human genome representing the ENCODE pilot project regions. 5C maps were generated for GM12878, K562 and HeLa-S3 cells and results were integrated with data from the ENCODE consortium. In each cell line we discovered >1,000 long-range interactions between promoters and distal sites that include elements resembling enhancers, promoters and CTCF-bound sites. We observed significant correlations between gene expression, promoter-enhancer interactions and the presence of enhancer RNAs. Long-range interactions show marked asymmetry with a bias for interactions with elements located ∼120 kilobases upstream of the TSS. Long-range interactions are often not blocked by sites bound by CTCF and cohesin, indicating that many of these sites do not demarcate physically insulated gene domains. Furthermore, only ∼7% of looping interactions are with the nearest gene, indicating that genomic proximity is not a simple predictor for long-range interactions. Finally, promoters and distal elements are engaged in multiple long-range interactions to form complex networks. Our results start to place genes and regulatory elements in three-dimensional context, revealing their functional relationships.

1,438 citations


Journal ArticleDOI
TL;DR: In this article, the authors present a pipeline that integrates a strategy for mapping of sequencing reads and a data-driven method for iterative correction of biases, yielding genome-wide maps of relative contact probabilities.
Abstract: Extracting biologically meaningful information from chromosomal interactions obtained with genome-wide chromosome conformation capture (3C) analyses requires elimination of systematic biases. We present a pipeline that integrates a strategy for mapping of sequencing reads and a data-driven method for iterative correction of biases, yielding genome-wide maps of relative contact probabilities. We validate ICE (Iterative Correction and Eigenvector decomposition) on published Hi-C data, and demonstrate that eigenvector decomposition of the obtained maps provides insights into local chromatin states, global patterns of chromosomal interactions, and the conserved organization of human and mouse chromosomes.

1,192 citations


Journal ArticleDOI
01 Nov 2012-Methods
TL;DR: In Hi-C, a biotin-labeled nucleotide is incorporated at the ligation junction, enabling selective purification of chimeric DNA ligation junctions followed by deep sequencing, and the compatibility of hi-C with next generation sequencing platforms makes it possible to detect chromatin interactions on an unprecedented scale.

790 citations


Journal ArticleDOI
TL;DR: The current 3C-based methods are evaluated and compared, their contribution to the current understanding of genome structure is summarized, and how shape influences genome function is discussed.
Abstract: Over the past 10 years, the development of chromosome conformation capture (3C) technology and the subsequent genomic variants thereof have enabled the analysis of nuclear organization at an unprecedented resolution and throughput. The technology relies on the original and, in hindsight, remarkably simple idea that digestion and religation of fixed chromatin in cells, followed by the quantification of ligation junctions, allows for the determination of DNA contact frequencies and insight into chromosome topology. Here we evaluate and compare the current 3C-based methods (including 4C [chromosome conformation capture-on-chip], 5C [chromosome conformation capture carbon copy], HiC, and ChIA-PET), summarize their contribution to our current understanding of genome structure, and discuss how shape influences genome function.

714 citations


Journal ArticleDOI
TL;DR: A computational method is developed to translate the TCC data into physical chromatin contacts in a population of three-dimensional genome structures, demonstrating that the indiscriminate properties of interchromosomal interactions are consistent with the well-known architectural features of the human genome.
Abstract: We describe tethered conformation capture (TCC), a method for genome-wide mapping of chromatin interactions. By performing ligations on solid substrates rather than in solution, TCC substantially enhances the signal-to-noise ratio, thereby facilitating a detailed analysis of interactions within and between chromosomes. We identified a group of regions in each chromosome in human cells that account for the majority of interchromosomal interactions. These regions are marked by high transcriptional activity, suggesting that their interactions are mediated by transcriptional machinery. Each of these regions interacts with numerous other such regions throughout the genome in an indiscriminate fashion, partly driven by the accessibility of the partners. As a different combination of interactions is likely present in different cells, we developed a computational method to translate the TCC data into physical chromatin contacts in a population of three-dimensional genome structures. Statistical analysis of the resulting population demonstrates that the indiscriminate properties of interchromosomal interactions are consistent with the well-known architectural features of the human genome.

562 citations


Journal ArticleDOI
TL;DR: The strings and binders switch model reproduces the recently proposed “fractal–globule” model, but only as one of many possible transient conformations.
Abstract: Chromatin has a complex spatial organization in the cell nucleus that serves vital functional purposes. A variety of chromatin folding conformations has been detected by single-cell imaging and chromosome conformation capture-based approaches. However, a unified quantitative framework describing spatial chromatin organization is still lacking. Here, we explore the “strings and binders switch” model to explain the origin and variety of chromatin behaviors that coexist and dynamically change within living cells. This simple polymer model recapitulates the scaling properties of chromatin folding reported experimentally in different cellular systems, the fractal state of chromatin, the processes of domain formation, and looping out. Additionally, the strings and binders switch model reproduces the recently proposed “fractal–globule” model, but only as one of many possible transient conformations.

520 citations


Journal ArticleDOI
TL;DR: This work presents a cost-effective methodology and computational analysis pipeline for robust characterization of the physical organization around selected promoters and other functional elements using chromosome conformation capture combined with high-throughput sequencing (4C-seq).
Abstract: Regulatory DNA elements can control the expression of distant genes via physical interactions. Here we present a cost-effective methodology and computational analysis pipeline for robust characterization of the physical organization around selected promoters and other functional elements using chromosome conformation capture combined with high-throughput sequencing (4C-seq). Our approach can be multiplexed and routinely integrated with other functional genomics assays to facilitate physical characterization of gene regulation.

374 citations


Journal ArticleDOI
01 Nov 2012-Methods
TL;DR: A step-by-step protocol is provided for 4C-seq, describing the procedure from the initial template preparation until the final data analysis, interchanged with background information and considerations.

Book ChapterDOI
21 Apr 2012
TL;DR: The 3D architecture of the Caulobacter crescentus genome is determined by combining genome-wide chromatin interaction detection, live-cell imaging, and computational modeling, which suggest that genome folding is globally dictated by the parS sites and chromosome segregation.
Abstract: We have determined the three-dimensional (3D) architecture of the Caulobacter crescentus genome by combining genome-wide chromatin interaction detection, live-cell imaging, and computational modeling. Using chromosome conformation capture carbon copy (5C), we derive ˜13 kb resolution 3D models of the Caulobacter genome. The resulting models illustrate that the genome is ellipsoidal with periodically arranged arms. The parS sites, a pair of short contiguous sequence elements known to be involved in chromosome segregation, are positioned at one pole, where they anchor the chromosome to the cell and contribute to the formation of a compact chromatin conformation. Repositioning these elements resulted in rotations of the chromosome that changed the subcellular positions of most genes. Such rotations did not lead to large-scale changes in gene expression, indicating that genome folding does not strongly affect gene regulation. Collectively, our data suggest that genome folding is globally dictated by the parS sites and chromosome segregation. Highlight of an article published in Molecular Cell in 2011.

Journal ArticleDOI
01 Nov 2012-Methods
TL;DR: The 3C procedure is described in detail, including the appropriate use of the technology, the experimental set-up, an optimized protocol and troubleshooting guide, and considerations for data analysis, with special attention to primer design, appropriate controls and data analysis.

Journal ArticleDOI
TL;DR: Polymer models provide a framework for the interpretation of experimental data as ensembles of conformations rather than collections of loops, and will be crucial for untangling functional implications of chromosomal organization as mentioned in this paper.

01 Apr 2012
TL;DR: Basic polymer states are reviewed, how an appropriate polymer model can be determined from experimental data is discussed, and the success and limitations of various polymer models of higher-order interphase chromatin organization are examined.
Abstract: Advances in microscopy and genomic techniques have provided new insight into spatial chromatin organization inside of the nucleus. In particular, chromosome conformation capture data has highlighted the relevance of polymer physics for high-order chromatin organization. In this context, we review basic polymer states, discuss how an appropriate polymer model can be determined from experimental data, and examine the success and limitations of various polymer models of higher-order interphase chromatin organization. By taking into account topological constraints acting on the chromatin fiber, recently developed polymer models of interphase chromatin can reproduce the observed scaling of distances between genomic loci, chromosomal territories, and probabilities of contacts between loci measured by chromosome conformation capture methods. Polymer models provide a framework for the interpretation of experimental data as ensembles of conformations rather than collections of loops, and will be crucial for untangling functional implications of chromosomal organization.

Journal ArticleDOI
TL;DR: A model for Myb activation by distal enhancers dynamically bound by KLF1 and the GATA1/TAL1/LDB1 complex, which primarily function as a transcription elongation element through chromatin looping is proposed.
Abstract: The key haematopoietic regulator Myb is essential for coordinating proliferation and differentiation. ChIP-Sequencing and Chromosome Conformation Capture (3C)-Sequencing were used to characterize the structural and protein-binding dynamics of the Myb locus during erythroid differentiation. In proliferating cells expressing Myb, enhancers within the Myb-Hbs1l intergenic region were shown to form an active chromatin hub (ACH) containing the Myb promoter and first intron. This first intron was found to harbour the transition site from transcription initiation to elongation, which takes place around a conserved CTCF site. Upon erythroid differentiation, Myb expression is downregulated and the ACH destabilized. We propose a model for Myb activation by distal enhancers dynamically bound by KLF1 and the GATA1/TAL1/LDB1 complex, which primarily function as a transcription elongation element through chromatin looping.

Journal ArticleDOI
TL;DR: It is suggested that gene loop disruption is an early step in the switch from an expressed to a Polycomb‐silenced state and does not need a cold‐induced PHD protein required for the epigenetic silencing.
Abstract: Gene activation in eukaryotes frequently involves interactions between chromosomal regions. We have investigated whether higher-order chromatin structures are involved in the regulation of the Arabidopsis floral repressor gene FLC, a target of several chromatin regulatory pathways. Here, we identify a gene loop involving the physical interaction of the 5' and 3' flanking regions of the FLC locus using chromosome conformation capture. The FLC loop is unaffected by mutations disrupting conserved chromatin regulatory pathways leading to very different expression states. However, the loop is disrupted during vernalization, the cold-induced, Polycomb-dependent epigenetic silencing of FLC. Loop disruption parallels timing of the cold-induced FLC transcriptional shut-down and upregulation of FLC antisense transcripts, but does not need a cold-induced PHD protein required for the epigenetic silencing. We suggest that gene loop disruption is an early step in the switch from an expressed to a Polycomb-silenced state.

Journal ArticleDOI
TL;DR: It is demonstrated that oncogenic transcription factor overexpression is associated with global, reproducible, and functionally coherent changes in chromatin organization, as genomic alterations in other cancer types frequently give rise to aberrant transcription factor expression.
Abstract: Emerging evidence suggests that chromatin adopts a nonrandom 3D topology and that the organization of genes into structural hubs and domains affects their transcriptional status. How chromatin conformation changes in diseases such as cancer is poorly understood. Moreover, how oncogenic transcription factors, which bind to thousands of sites across the genome, influence gene regulation by globally altering the topology of chromatin requires further investigation. To address these questions, we performed unbiased high-resolution mapping of intra- and interchromosome interactions upon overexpression of ERG, an oncogenic transcription factor frequently overexpressed in prostate cancer as a result of a gene fusion. By integrating data from genome-wide chromosome conformation capture (Hi-C), ERG binding, and gene expression, we demonstrate that oncogenic transcription factor overexpression is associated with global, reproducible, and functionally coherent changes in chromatin organization. The results presented here have broader implications, as genomic alterations in other cancer types frequently give rise to aberrant transcription factor expression, e.g., EWS-FLI1, c-Myc, n-Myc, and PML-RARα.

Journal ArticleDOI
TL;DR: It is demonstrated that enhancers within bystander genes drive the expression of genes such as Otx and Islet, critical regulators of central nervous system development across bilaterians, suggesting that cis-regulatory constraints are crucial in determining metazoan genome architecture.
Abstract: The order of genes in eukaryotic genomes has generally been assumed to be neutral, since gene order is largely scrambled over evolutionary time. Only a handful of exceptional examples are known, typically involving deeply conserved clusters of tandemly duplicated genes (e.g., Hox genes and histones). Here we report the first systematic survey of microsynteny conservation across metazoans, utilizing 17 genome sequences. We identified nearly 600 pairs of unrelated genes that have remained tightly physically linked in diverse lineages across over 600 million years of evolution. Integrating sequence conservation, gene expression data, gene function, epigenetic marks, and other genomic features, we provide extensive evidence that many conserved ancient linkages involve (1) the coordinated transcription of neighboring genes, or (2) genomic regulatory blocks (GRBs) in which transcriptional enhancers controlling developmental genes are contained within nearby bystander genes. In addition, we generated ChIP-seq data for key histone modifications in zebrafish embryos, which provided further evidence of putative GRBs in embryonic development. Finally, using chromosome conformation capture (3C) assays and stable transgenic experiments, we demonstrate that enhancers within bystander genes drive the expression of genes such as Otx and Islet, critical regulators of central nervous system development across bilaterians. These results suggest that ancient genomic functional associations are far more common than previously thought-involving ∼12% of the ancestral bilaterian genome-and that cis-regulatory constraints are crucial in determining metazoan genome architecture.

Journal ArticleDOI
TL;DR: Characterization of a putative tDNA insulator in human cells reveals that the site possesses chromatin signatures similar to those observed at other better‐characterized eukaryotic insulators.
Abstract: Insulators help separate active chromatin domains from silenced ones. In yeast, gene promoters act as insulators to block the spread of Sir and HP1 mediated silencing while in metazoans most insulators are multipartite autonomous entities. tDNAs are repetitive sequences dispersed throughout the human genome and we now show that some of these tDNAs can function as insulators in human cells. Using computational methods, we identified putative human tDNA insulators. Using silencer blocking, transgene protection and repressor blocking assays we show that some of these tDNA-containing fragments can function as barrier insulators in human cells. We find that these elements also have the ability to block enhancers from activating RNA pol II transcribed promoters. Characterization of a putative tDNA insulator in human cells reveals that the site possesses chromatin signatures similar to those observed at other better-characterized eukaryotic insulators. Enhanced 4C analysis demonstrates that the tDNA insulator makes long-range chromatin contacts with other tDNAs and ETC sites but not with intervening or flanking RNA pol II transcribed genes.

Journal ArticleDOI
TL;DR: It is shown that TNFα induces responsive genes to congregate in discrete ‘NFκB factories’, and it is expected that all signalling pathways to contain this extra leg.
Abstract: Tumour necrosis factor alpha (TNFα) is a potent cytokine that signals through nuclear factor kappa B (NFκB) to activate a subset of human genes. It is usually assumed that this involves RNA polymerases transcribing responsive genes wherever they might be in the nucleus. Using primary human endothelial cells, variants of chromosome conformation capture (including 4C and chromatin interaction analysis with paired-end tag sequencing), and fluorescence in situ hybridization to detect single nascent transcripts, we show that TNFα induces responsive genes to congregate in discrete 'NFκB factories'. Some factories further specialize in transcribing responsive genes encoding micro-RNAs that target downregulated mRNAs. We expect all signalling pathways to contain this extra leg, where responding genes are transcribed in analogous specialized factories.

Journal ArticleDOI
TL;DR: Mapping histone methylation landscapes in neurons from human, chimpanzee, and macaque brains reveals coordinated, human-specific epigenetic regulation at hundreds of regulatory sequences.
Abstract: Cognitive abilities and disorders unique to humans are thought to result from adaptively driven changes in brain transcriptomes, but little is known about the role of cis-regulatory changes affecting transcription start sites (TSS). Here, we mapped in human, chimpanzee, and macaque prefrontal cortex the genome-wide distribution of histone H3 trimethylated at lysine 4 (H3K4me3), an epigenetic mark sharply regulated at TSS, and identified 471 sequences with human-specific enrichment or depletion. Among these were 33 loci selectively methylated in neuronal but not non-neuronal chromatin from children and adults, including TSS at DPP10 (2q14.1), CNTN4 and CHL1 (3p26.3), and other neuropsychiatric susceptibility genes. Regulatory sequences at DPP10 and additional loci carried a strong footprint of hominid adaptation, including elevated nucleotide substitution rates and regulatory motifs absent in other primates (including archaic hominins), with evidence for selective pressures during more recent evolution and adaptive fixations in modern populations. Chromosome conformation capture at two neurodevelopmental disease loci, 2q14.1 and 16p11.2, revealed higher order chromatin structures resulting in physical contact of multiple human-specific H3K4me3 peaks spaced 0.5-1 Mb apart, in conjunction with a novel cis-bound antisense RNA linked to Polycomb repressor proteins and downregulated DPP10 expression. Therefore, coordinated epigenetic regulation via newly derived TSS chromatin could play an important role in the emergence of human-specific gene expression networks in brain that contribute to cognitive functions and neurological disease susceptibility in modern day humans.

Journal ArticleDOI
01 Nov 2012-Methods
TL;DR: A computational module of the Integrative Modeling Platform is described that uses chromosome conformation capture data to determine the 3D architecture of genomic domains and entire genomes at unprecedented resolutions, and allows characterizing global chromatin features and their relation to gene expression.

Journal ArticleDOI
TL;DR: This work identifies megabase-sized self-interacting domains in the nucleus of a human lymphoblastoid cell line, as well as in cycling and resting peripheral blood mononuclear cells (PBMC), and provides direct clues that, in addition to the timing value per se, the shape of the timing profile at a given locus defines its set of genomic contacts.
Abstract: Although chromatin folding is known to be of functional importance to control the gene expression program, less is known regarding its interplay with DNA replication. Here, using Circular Chromatin Conformation Capture combined with high-throughput sequencing, we identified megabase-sized self-interacting domains in the nucleus of a human lymphoblastoid cell line, as well as in cycling and resting peripheral blood mononuclear cells (PBMC). Strikingly, the boundaries of those domains coincide with early-initiation zones in every cell types. Preferential interactions have been observed between the consecutive early-initiation zones, but also between those separated by several tens of megabases. Thus, the 3D conformation of chromatin is strongly correlated with the replication timing along the whole chromosome. We furthermore provide direct clues that, in addition to the timing value per se, the shape of the timing profile at a given locus defines its set of genomic contacts. As this timing-related scheme of chromatin organization exists in lymphoblastoid cells, resting and cycling PBMC, this indicates that it is maintained several weeks or months after the previous S-phase. Lastly, our work highlights that the major chromatin changes accompanying PBMC entry into cell cycle occur while keeping largely unchanged the long-range chromatin contacts.

Journal ArticleDOI
TL;DR: The data indicate that Eα and CTCF cooperate to create a developmentally regulated chromatin hub that supports Vα–Jα synapsis and recombination.
Abstract: Antigen receptor locus V(D)J recombination requires interactions between widely separated variable (V), diversity (D), and joining (J) gene segments, but the mechanisms that generate these interactions are not well understood. Here we assessed mechanisms that direct developmental stage-specific long-distance interactions at the Tcra/Tcrd locus. The Tcra/Tcrd locus recombines Tcrd gene segments in CD4−CD8− double-negative thymocytes and Tcra gene segments in CD4+CD8+ double-positive thymocytes. Initial Vα-to-Jα recombination occurs within a chromosomal domain that displays a contracted conformation in both thymocyte subsets. We used chromosome conformation capture to demonstrate that the Tcra enhancer (Eα) interacts directly with Vα and Jα gene segments distributed across this domain, specifically in double-positive thymocytes. Moreover, Eα promotes interactions between these Vα and Jα segments that should facilitate their synapsis. We found that the CCCTC-binding factor (CTCF) binds to Eα and to many locus promoters, biases Eα to interact with these promoters, and is required for efficient Vα–Jα recombination. Our data indicate that Eα and CTCF cooperate to create a developmentally regulated chromatin hub that supports Vα–Jα synapsis and recombination.

Journal ArticleDOI
TL;DR: What new insights into chromosome territory organization and mechanisms of gene regulation these innovative tools are providing are considered, and the extent to which the visual and the molecular approaches give consistent or differing views of chromosomes territory organization is considered.

Journal ArticleDOI
TL;DR: A principle of developmentally regulated, large-scale chromosome folding involving a subnuclear compartment switch of inaccessible chromatin is revealed, which may underlie resistance to reprogramming in replication-timing switch regions.
Abstract: Several 400- to 800-kb murine chromosome domains switch from early to late replication during loss of pluripotency, accompanied by a stable form of gene silencing that is resistant to reprogramming. We found that, whereas enhanced nuclease accessibility correlated with early replication genome-wide, domains that switch replication timing during differentiation were exceptionally inaccessible even when early-replicating. Nonetheless, two domains studied in detail exhibited substantial changes in transcriptional activity and higher-order chromatin unfolding confined to the region of replication timing change. Chromosome conformation capture (4C) data revealed that in the unfolded state in embryonic stem cells, these domains interacted preferentially with the early-replicating chromatin compartment, rarely interacting even with flanking late-replicating domains, whereas after differentiation, these same domains preferentially associated with late-replicating chromatin, including flanking domains. In both configurations they retained local boundaries of self-interaction, supporting the replication domain model of replication-timing regulation. Our results reveal a principle of developmentally regulated, large-scale chromosome folding involving a subnuclear compartment switch of inaccessible chromatin. This unusual level of regulation may underlie resistance to reprogramming in replication-timing switch regions.

Journal ArticleDOI
01 Nov 2012-Methods
TL;DR: An updated reference protocol for the production of 5C libraries analyzed by next-generation sequencing or onto microarrays is provided and it is believed that this detailed protocol will help guide researchers in probing spatial genome organization and its role in various biological processes.

Journal ArticleDOI
02 Mar 2012-Cell
TL;DR: The aim is to determine comprehensively higher-order chromosome structure in adefi ned region and the role of specifi c transcription factors in the interaction between a known promoter and enhancer.

Book ChapterDOI
TL;DR: Chromatic conformation capture sequencing (4C-seq) as mentioned in this paper is a high-throughput version of the 3C technique that combines 3C-on-chip (3C) protocol with next-generation Illumina sequencing.
Abstract: Eukaryotic transcription is tightly regulated by transcriptional regulatory elements, even though these elements may be located far away from their target genes. It is now widely recognized that these regulatory elements can be brought in close proximity through the formation of chromatin loops, and that these loops are crucial for transcriptional regulation of their target genes. The chromosome conformation capture (3C) technique presents a snapshot of long-range interactions, by fixing physically interacting elements with formaldehyde, digestion of the DNA, and ligation to obtain a library of unique ligation products. Recently, several large-scale modifications to the 3C technique have been presented. Here, we describe chromosome conformation capture sequencing (4C-seq), a high-throughput version of the 3C technique that combines the 3C-on-chip (4C) protocol with next-generation Illumina sequencing. The method is presented for use in mammalian cell lines, but can be adapted to use in mammalian tissues and any other eukaryotic genome.