scispace - formally typeset
Search or ask a question

Showing papers on "Nanomedicine published in 2008"


Journal ArticleDOI
TL;DR: In this paper, the authors proposed a passive targeting mechanism, active targeting strategies using ligands or antibodies directed against selected tumor targets amplify the specificity of these therapeutic nanoparticles, enabling them to carry their loaded active drugs to cancer cells by selectively using the unique pathophysiology of tumors.
Abstract: Cancer nanotherapeutics are rapidly progressing and are being implemented to solve several limitations of conventional drug delivery systems such as nonspecific biodistribution and targeting, lack of water solubility, poor oral bioavailability, and low therapeutic indices. To improve the biodistribution of cancer drugs, nanoparticles have been designed for optimal size and surface characteristics to increase their circulation time in the bloodstream. They are also able to carry their loaded active drugs to cancer cells by selectively using the unique pathophysiology of tumors, such as their enhanced permeability and retention effect and the tumor microenvironment. In addition to this passive targeting mechanism, active targeting strategies using ligands or antibodies directed against selected tumor targets amplify the specificity of these therapeutic nanoparticles. Drug resistance, another obstacle that impedes the efficacy of both molecularly targeted and conventional chemotherapeutic agents, might also be overcome, or at least reduced, using nanoparticles. Nanoparticles have the ability to accumulate in cells without being recognized by P-glycoprotein, one of the main mediators of multidrug resistance, resulting in the increased intracellular concentration of drugs. Multifunctional and multiplex nanoparticles are now being actively investigated and are on the horizon as the next generation of nanoparticles, facilitating personalized and tailored cancer treatment.

2,558 citations


Journal ArticleDOI
TL;DR: Nanomaterials have unique physicochemical properties, such as ultra small size, large surface area to mass ratio, and high reactivity, which are different from bulk materials of the same composition, which can be used to overcome some of the limitations found in traditional therapeutic and diagnostic agents.
Abstract: Nanotechnology is the understanding and control of matter generally in the 1-100 nm dimension range. The application of nanotechnology to medicine, known as nanomedicine, concerns the use of precisely engineered materials at this length scale to develop novel therapeutic and diagnostic modalities. Nanomaterials have unique physicochemical properties, such as ultra small size, large surface area to mass ratio, and high reactivity, which are different from bulk materials of the same composition. These properties can be used to overcome some of the limitations found in traditional therapeutic and diagnostic agents.

2,202 citations


Journal ArticleDOI
TL;DR: In this review, the role of microorganisms and plants in the synthesis of nanoparticles is critically assessed.
Abstract: Nanotechnology involves the production, manipulation and use of materials ranging in size from less than a micron to that of individual atoms. Although nanomaterials may be synthesized using chemical approaches, it is now possible to include the use of biological materials. In this review, we critically assess the role of microorganisms and plants in the synthesis of nanoparticles.

1,607 citations


Journal ArticleDOI
TL;DR: It is shown here that highly selective protein adsorption, added to the fact that particles can reach subcellular locations, results in significant new potential impacts for nanoparticles on protein interactions and cellular behavior.

1,556 citations


Journal ArticleDOI
TL;DR: Nanoparticles show their promise for improving the efficacy of drugs with a narrow therapeutic window or low bioavailability, such as anticancer drugs and nucleic acid-based drugs.
Abstract: Nanoparticles show their promise for improving the efficacy of drugs with a narrow therapeutic window or low bioavailability, such as anticancer drugs and nucleic acid-based drugs. The pharmacokinetics (PK) and tissue distribution of the nanoparticles largely define their therapeutic effect and toxicity. Chemical and physical properties of the nanoparticles, including size, surface charge, and surface chemistry, are important factors that determine their PK and biodistribution. The intracellular fate of the nanoparticles after cellular internalization that affects the drug bioavailability is also discussed. Strategies for overcoming barriers for intracellular delivery and drug release are presented. Finally, future directions for improving the PK of nanoparticles and perspectives in the field are discussed.

1,380 citations


Journal ArticleDOI
TL;DR: These studies suggest that Pluronics have a broad spectrum of biological response modifying activities which make it one of the most potent drug targeting systems available, resulting in a remarkable impact on the emergent field of nanomedicine.

1,111 citations


Journal ArticleDOI
TL;DR: This work used rapid and tunable mixing through hydrodynamic flow focusing in microfluidic channels to control nanoprecipitation of poly(lactic- co-glycolic acid)- b-poly(ethylene glycol) diblock copolymers as a model polymeric biomaterial for drug delivery.
Abstract: A central challenge in the development of drug-encapsulated polymeric nanoparticles is the inability to control the mixing processes required for their synthesis resulting in variable nanoparticle physicochemical properties. Nanoparticles may be developed by mixing and nanoprecipitation of polymers and drugs dissolved in organic solvents with nonsolvents. We used rapid and tunable mixing through hydrodynamic flow focusing in microfluidic channels to control nanoprecipitation of poly(lactic-co-glycolic acid)-b-poly(ethylene glycol) diblock copolymers as a model polymeric biomaterial for drug delivery. We demonstrate that by varying (1) flow rates, (2) polymer composition, and (3) polymer concentration we can optimize the size, improve polydispersity, and control drug loading and release of the resulting nanoparticles. This work suggests that microfluidics may find applications for the development and optimization of polymeric nanoparticles in the newly emerging field of nanomedicine.

758 citations


Journal ArticleDOI
TL;DR: A multifunctional platform based on gold nanoparticles, with multiple receptor targeting, multimodality imaging, and multiple therapeutic entities, holds the promise for a "magic gold bullet" against cancer.
Abstract: It has been almost 4 decades since the “war on cancer” was declared. It is now generally believed that personalized medicine is the future for cancer patient management. Possessing unprecedented potential for early detection, accurate diagnosis, and personalized treatment of cancer, nanoparticles have been extensively studied over the last decade. In this review, we will summarize the current state-of-the-art of gold nanoparticles in biomedical applications targeting cancer. Gold nanospheres, nanorods, nanoshells, nanocages, and surface enhanced Raman scattering nanoparticles will be discussed in detail regarding their uses in in vitro assays, ex vivo and in vivo imaging, cancer therapy, and drug delivery. Multifunctionality is the key feature of nanoparticle-based agents. Targeting ligands, imaging labels, therapeutic drugs, and other functionalities can all be integrated to allow for targeted molecular imaging and molecular therapy of cancer. Big strides have been made and many proof-of-principle studies have been successfully performed. The future looks brighter than ever yet many hurdles remain to be conquered. A multifunctional platform based on gold nanoparticles, with multiple receptor targeting, multimodality imaging, and multiple therapeutic entities, holds the promise for a “magic gold bullet” against cancer.

738 citations


Journal ArticleDOI
TL;DR: The characteristics of cancer that provide nanodrug targeting opportunities are highlighted and rational approaches for future development of polymeric nanomedicines are discussed.

455 citations


Journal ArticleDOI
TL;DR: An overview of bimodal magnetic-fluorescent nanocomposite materials with potential applications in biotechnology and nanomedicine can be found in this article, where the classification and main synthesis strategies along with approaches for the fabrication of fluorescent-magnetic nanoparticles are considered.
Abstract: Nanotechnology is a fast-growing area, involving the fabrication and use of nano-sized materials and devices. Various nanocomposite materials play a number of important roles in modern science and technology. Magnetic and fluorescent inorganic nanoparticles are of particular importance due to their broad range of potential applications. It is expected that the combination of magnetic and fluorescent properties in one nanocomposite would enable the engineering of unique multifunctional nanoscale devices, which could be manipulated using external magnetic fields. The aim of this review is to present an overview of bimodal “two-in-one” magnetic-fluorescent nanocomposite materials which combine both magnetic and fluorescent properties in one entity, in particular those with potential applications in biotechnology and nanomedicine. There is a great necessity for the development of these multifunctional nanocomposites, but there are some difficulties and challenges to overcome in their fabrication such as quenching of the fluorescent entity by the magnetic core. Fluorescent-magnetic nanocomposites include a variety of materials including silica-based, dye-functionalised magnetic nanoparticles and quantum dots-magnetic nanoparticle composites. The classification and main synthesis strategies, along with approaches for the fabrication of fluorescent-magnetic nanocomposites, are considered. The current and potential biomedical uses, including biological imaging, cell tracking, magnetic bioseparation, nanomedicine and bio- and chemo-sensoring, of magnetic-fluorescent nanocomposites are also discussed.

450 citations


Journal ArticleDOI
TL;DR: A survey of recent research progress on the fabrication strategies of these nanoparticle systems and their applications to medical diagnostics and therapy can be found in this article, where a number of different materials can be assembled on, encapsulated within, or integrated both inside and on the surface of silica nanoparticles using different chemistries and techniques.
Abstract: Suitably integrating multiple nanomaterials into nanostructured particle systems with specific combinations of properties has recently attracted significant attention in the research community. In particular, numerous particle systems have been designed and fabricated by integrating diverse materials with monodispersed silica nanoparticles. One or more distinct nanomaterials can be assembled on, encapsulated within, or integrated both inside and on the surface of silica nanoparticles using different chemistries and techniques to create multifunctional nanosystems. Research on these particle systems for biomedical applications has progressed rapidly during recent years due to the synergistic advantages of these complexes compared to the use of single components. This feature article surveys recent research progress on the fabrication strategies of these nanoparticle systems and their applications to medical diagnostics and therapy, thereby paving the way for the emerging field of nanomedicine.

01 Jan 2008
TL;DR: The importance of bactericidal nanomaterials study is because of the increase in new resistant strains of bacteria against most potent antibiotics, which has promoted research in the well known activity of silver ions and silver-based compounds, including silver nanoparticles.
Abstract: Nanotechnology is expected to open some new aspects to fight and prevent diseases using atomic scale tailoring of materials. The ability to uncover the structure and function of biosystems at the nanoscale, stimulates research leading to improvement in biology, biotechnology, medicine and healthcare. The size of nanomaterials is similar to that of most biological molecules and structures; therefore, nanomaterials can be useful for both in vivo and in vitro biomedical research and applications. The integration of nanomaterials with biology has led to the development of diagnostic devices, contrast agents, analytical tools, physical therapy applications, and drug delivery vehicles. In all the nanomaterials with antibacterial properties, metallic nanoparticles are the best. Nanoparticles increase chemical activity due to crystallographic surface structure with their large surface to volume ratio. The importance of bactericidal nanomaterials study is because of the increase in new resistant strains of bacteria against most potent antibiotics. This has promoted research in the well known activity of silver ions and silver-based compounds, including silver nanoparticles. This effect was size and dose dependent and was more pronounced against gram-negative bacteria than gram-positive organisms.

Journal ArticleDOI
TL;DR: Molecular imaging, first developed to localise antigens in light microscopy, now encompasses all imaging modalities including those used in clinical care: optical imaging, nuclear medical imaging, ultrasound imaging, CT, MRI, and photoacoustic imaging.
Abstract: Molecular imaging, first developed to localise antigens in light microscopy, now encompasses all imaging modalities including those used in clinical care: optical imaging, nuclear medical imaging, ultrasound imaging, CT, MRI, and photoacoustic imaging. Molecular imaging always requires accumulation of contrast agent in the target site, often achieved most efficiently by steering nanoparticles containing contrast agent into the target. This entails accessing target molecules hidden behind tissue barriers, necessitating the use of targeting groups. For imaging modalities with low sensitivity, nanoparticles bearing multiple contrast groups provide signal amplification. The same nanoparticles can in principle deliver both contrast medium and drug, allowing monitoring of biodistribution and therapeutic activity simultaneously (theranostics). Nanoparticles with multiple bioadhesive sites for target recognition and binding will be larger than 20 nm diameter. They share functionalities with many subcellular organelles (ribosomes, proteasomes, ion channels, and transport vesicles) and are of similar sizes. The materials used to synthesise nanoparticles include natural proteins and polymers, artificial polymers, dendrimers, fullerenes and other carbon-based structures, lipid-water micelles, viral capsids, metals, metal oxides, and ceramics. Signal generators incorporated into nanoparticles include iron oxide, gadolinium, fluorine, iodine, bismuth, radionuclides, quantum dots, and metal nanoclusters. Diagnostic imaging applications, now appearing, include sentinal node localisation and stem cell tracking.

Journal ArticleDOI
TL;DR: An overview of novel nanomaterials that have potential to improve diagnosis and therapy of neurodegenerative disorders and how to enable these materials to cross the blood brain barrier will allow efficient systemic delivery of therapeutic and diagnostic agents to the brain.
Abstract: Neurodegenerative disorders including Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, and stroke are rapidly increasing as population ages. The field of nanomedicine is rapidly expanding and promises revolutionary advances to the diagnosis and treatment of devastating human diseases. This paper provides an overview of novel nanomaterials that have potential to improve diagnosis and therapy of neurodegenerative disorders. Examples include liposomes, nanoparticles, polymeric micelles, block ionomer complexes, nanogels, and dendrimers that have been tested clinically or in experimental models for delivery of drugs, genes, and imaging agents. More recently discovered nanotubes and nanofibers are evaluated as promising scaffolds for neuroregeneration. Novel experimental neuroprotective strategies also include nanomaterials, such as fullerenes, which have antioxidant properties to eliminate reactive oxygen species in the brain to mitigate oxidative stress. Novel technologies to enable these materials to cross the blood brain barrier will allow efficient systemic delivery of therapeutic and diagnostic agents to the brain. Furthermore, by combining such nanomaterials with cell-based delivery strategies, the outcomes of neurodegenerative disorders can be greatly improved.

Journal ArticleDOI
01 Jun 2008-Small
TL;DR: It is hypothesized that sp2-hybridized carbon materials are near-universal sorbents for organic compounds in aqueous phases and in light of a recent report of favorable noncovalent interactions between small-aromatic-molecule therapeutic agents and single-walled carbon nanotubes (SWNTs),[5] that SWNTs will adsorb a wide variety of small organic solutes from biological media.
Abstract: Nanotoxicology and nanomedicine make extensive use of in vitro cellular assays that were developed prior to the nanotechnology era. The introduction of nanomaterials to these standard assays causes problems that are currently limiting progress in the field.[1] Nanoparticles are often difficult to disperse;[2] they can interfere with optical measurements through light absorption, and they can interact with dyes used as molecular probes of cellular integrity.[3] In some cases the resulting artifacts can lead to gross misinterpretation of effects on cell viability and cytotoxicity.[4] Because sp2-hybridized carbon materials are near-universal sorbents for organic compounds in aqueous phases, and in light of a recent report of favorable noncovalent interactions between small-aromatic-molecule therapeutic agents and single-walled carbon nanotubes (SWNTs),[5] we hypothesize that SWNTs will adsorb a wide variety of small organic solutes from biological media, not limited to indicator dyes or their water-insoluble reduction products.

Journal ArticleDOI
01 Sep 2008-Small
TL;DR: MTT assays reveal that the green gold nanoparticles are nontoxic and thus provide excellent opportunities for their applications in nanomedicine for molecular imaging and therapy.
Abstract: The present study demonstrates an unprecedented green process for the production of gold nanoparticles by simple treatment of gold salts with soybean extracts. Reduction capabilities of antioxidant phytochemicals present in soybean and their ability to reduce gold salts chemically to nanoparticles with subsequent coating of proteins and a host of other phytochemicals present in soybean on the freshly generated gold nanoparticles are discussed. The new genre of green nanoparticles exhibit remarkable in vitro stability in various buffers including saline, histidine, HSA, and cysteine solutions. MTT assays reveal that the green gold nanoparticles are nontoxic and thus provide excellent opportunities for their applications in nanomedicine for molecular imaging and therapy. The overall strategy described herein for the generation of gold nanoparticles meets all 12 principles of green chemistry, as no "man-made" chemicals, other than the gold salts, are used in the green nanotechnological process.

Book
03 Mar 2008
TL;DR: The role of Nanotechnology in Biological Therapies, and Personalized Medicine, and Ethical and Regulatory Aspects of Nanomedicine
Abstract: 1. Introduction 2. Nanotechnologies 3. Nanotechnologies for Basic Research Relevant to Medicine 4. Nanomolecular Diagnostics 5. Nanopharmaceuticals 6. Role of Nanotechnology in Biological Therapies 7. Nanodevices & Techniques for Clinical Applications 8. Nanooncology 9. Nanoneurology 10. Nanocardiology 11. Nanopulmonology 12. Nanoorthopedics 13. Nanoophthalmology 14. Nanomicrobiology 15. Miscellaneous Healthcare Applications of Nanobiotechnology 16. Nanobiotechnology and Personalized Medicine 17. Nanotoxicology 18. Ethical and Regulatory Aspects of Nanomedicine 19. Research and Future of Nanomedicine 20. References

Journal ArticleDOI
TL;DR: Synthetic routes, surface modification and functionaliztion of SPIONs, as well as the major biomedical applications are summarized, with emphasis on in vivo applications.
Abstract: Superparamagnetic iron oxide nanoparticles (SPIONs) have attract a great deal of interest in biomedical research and clinical applications over the past decades. Taking advantage the fact that SPIONs only exhibit magnetic properties in the presence of an applied magnetic field, they have been used in both in vitro magnetic separation and in vivo applications such as hyperthermia (HT), magnetic drug targeting (MDT), magnetic resonance imaging (MRI), gene delivery (GD) and nanomedicine. Successful applications of SPIONs rely on precise control of the particle's shape, size, and size distribution and several synthetic routes for preparing SPIONs have been explored. Tailored surface properties specifically designed for cell targeting are often required, although the generic strategy involves creating biocompatible polymeric or non-polymeric coating and subsequent conjugation of bioactive molecules. In this review article, synthetic routes, surface modification and functionaliztion of SPIONs, as well as the major biomedical applications are summarized, with emphasis on in vivo applications.

Journal ArticleDOI
TL;DR: Key techniques being fluorescence resonance energy transfer (FRET) and fluorescence lifetime sensing, as well as new nano‐encapsulation technologies for sensors such as layer‐by‐layer (LBL) films, might achieve better insulin delivery in diabetes by both improved islet encapsulation and oral insulin formulations.
Abstract: Nanomedicine involves measurement and therapy at the level of 1-100 nm. Although the science is still in its infancy, it has major potential applications in diabetes. These include solving needs such as non-invasive glucose monitoring using implanted nanosensors, with key techniques being fluorescence resonance energy transfer (FRET) and fluorescence lifetime sensing, as well as new nano-encapsulation technologies for sensors such as layer-by-layer (LBL) films. The latter might also achieve better insulin delivery in diabetes by both improved islet encapsulation and oral insulin formulations. An 'artificial nanopancreas' could be an alternative closed-loop insulin delivery system. Other applications of nanomedicine include targeted molecular imaging in vivo (e.g. tissue complications) using quantum dots (QDs) or gold nanoparticles, and single-molecule detection for the study of molecular diversity in diabetes pathology.

Journal ArticleDOI
TL;DR: New studies in mice show that particles that don't have targeting molecules attached can selectively enter certain organs solely on the basis of their charge and size.
Abstract: Nanoparticles have many potential medical applications but their behaviour in the body is poorly understood. New studies in mice show that particles that don't have targeting molecules attached can selectively enter certain organs solely on the basis of their charge and size.

Journal ArticleDOI
TL;DR: The potential of nanomedicine is illustrated by discussing biopharmaceutics of fullerene derivatives and their suitability for diagnostic and therapeutic purposes by discussing the effects of nanoparticles on metabolic enzymes as well as the parenteral or inhalation administration routes of nanoparticle formulations.
Abstract: Engineered nanomaterials are at the leading edge of the rapidly developing nanosciences and are founding an important class of new materials with specific physicochemical properties different from bulk materials with the same compositions. The potential for nanomaterials is rapidly expanding with novel applications constantly being explored in different areas. The unique size-dependent properties of nanomaterials make them very attractive for pharmaceutical applications. Investigations of physical, chemical and biological properties of engineered nanomaterials have yielded valuable information. Cytotoxic effects of certain engineered nanomaterials towards malignant cells form the basis for one aspect of nanomedicine. It is inferred that size, three dimensional shape, hydrophobicity and electronic configurations make them an appealing subject in medicinal chemistry. Their unique structure coupled with immense scope for derivatization forms a base for exciting developments in therapeutics. This review article addresses the fate of absorption, distribution, metabolism and excretion (ADME) of engineered nanoparticles in vitro and in vivo. It updates the distinctive methodology used for studying the biopharmaceutics of nanoparticles. This review addresses the future potential and safety concerns and genotoxicity of nanoparticle formulations in general. It particularly emphasizes the effects of nanoparticles on metabolic enzymes as well as the parenteral or inhalation administration routes of nanoparticle formulations. This paper illustrates the potential of nanomedicine by discussing biopharmaceutics of fullerene derivatives and their suitability for diagnostic and therapeutic purposes. Future direction is discussed as well.

Journal ArticleDOI
TL;DR: In this highlight, the emerging new discipline of nanotoxicology is discussed in terms of nanomedicine, nanocosmetics, and nanofood, with a wide variety of applications of inorganic layered double hydroxide (LDH) nanoparticles in multidisciplinary fields and their potential toxicity compared to that of other inorganic nanoparticles.
Abstract: In this highlight, the emerging new discipline of nanotoxicology is discussed in terms of nanomedicine, nanocosmetics, and nanofood. In particular, a wide variety of applications of inorganic layered double hydroxide (LDH) nanoparticles in multidisciplinary fields and their potential toxicity compared to that of other inorganic nanoparticlesin vitro as well as in vivo are described in detail. Study on the toxicity of nanoparticles can provide critical information about their practical biological applications, finally contributing to the sustainable development of nanotechnology with safe and biocompatible levels.

Journal ArticleDOI
TL;DR: An overview of how nanomedicine is presently influencing drug design and, more specifically, the development of radiopharmaceuticals for cancer management is provided.
Abstract: Nano-engineered particles have been developed to reach specific molecular targets on diseased cells and have been used in various experimental and clinical conditions. The medical application involves diagnostic and therapeutic applications and a large deal of this research concerns malignant disease. Various approaches have been tried to effectively reach the cancer cell and PEGylated liposomes have demonstrated targeting and controlled release of antineoplastic drugs. For cancer diagnostics nanoparticles have been engineered to optimize magnetic resonance imaging, ultrasound imaging and nuclear medicine imaging. Radiolabeled nanoparticles can also be used for therapeutic purposes when tagged with appropriate radionuclides. This article aims to provide an overview how nanomedicine is presently influencing drug design and, more specifically, the development of radiopharmaceuticals for cancer management.

Journal ArticleDOI
TL;DR: This review provides an outline of the polymeric micro/nanostructured advanced systems that are suited for the controlled and targeted administration of, specifically, nonconventional drugs.

Journal ArticleDOI
TL;DR: The in vivo behavior of shell cross-linked knedel-like (SCK) nanoparticles is shown to be tunable via a straightforward and versatile process that advances SCKs as attractive nanoscale carriers in the field of nanomedics.

Journal ArticleDOI
TL;DR: This review summarizes the recent developments in utilizing nanofibers for drug delivery and tissue engineering applications with a focus on electrospinning.
Abstract: Nanotechnology is an emerging technology seeking to exploit distinct technological advances controlling the structure of materials at a reduced dimensional scale approaching individual molecules and their aggregates or supramolecular structures. The manipulation and utilization of materials at nanoscale are expected to be critical drivers of economic growth and development in this century. In recent years, nanoscale sciences and engineering have provided new avenues for engineering materials down to molecular scale precision. The resultant materials have been demonstrated to have enhanced properties and applicability; and these materials are expected to be enabling technologies in the successful development and application of nanomedicine. Nanomedicine is defined as the monitoring, repair, construction, and control of human biological systems at the molecular level using engineered nanodevices and nanostructures. Electrospinning is a simple and cost-effective technique, capable of producing continuous fibers of various materials from polymers to ceramics. The electrospinning technique is used for the preparation of nanofibers and macroporous scaffolds intended for drug delivery and tissue engineering. These have special characteristics in terms of fabrication, porosity, variable diameters, topology and mechanical properties. This review summarizes the recent developments in utilizing nanofibers for drug delivery and tissue engineering applications.

Journal ArticleDOI
TL;DR: This special issue of Nanomedicine presents readers with current exciting developments in the use of nanoparticles and nanopatterns for biomedical diagnosis and drug delivery.

Journal ArticleDOI
TL;DR: The synthetic versatility of dendritic molecules has enabled the synthesis of a wide array of DNA binders and delivery vehicles, with different advantages, and this versatility forms the basis for optimism that the dendrite approach may well yield active, highly targeted delivery vectors, suitable for in vivo application in gene therapy.
Abstract: This article focuses on the ability of dendritic molecules to interact with nucleic acids and hence deliver them into cells. Dendritic molecules have branched structures which are made by an iterative, layer-by-layer synthesis. The control applied in their synthesis means that dendrimers are well-defined nanoscale molecular species - ideal for interacting with nanoscale bio-targets such as DNA/RNA. Binding and delivery of genetic material into cells in vivo holds out the prospect of gene therapy, and we will consider the potential advantages of dendritic vectors in this field of nanomedicine. As this article illustrates, the synthetic versatility of dendritic molecules has enabled the synthesis of a wide array of DNA binders and delivery vehicles, with different advantages. This versatility forms the basis for optimism that the dendritic approach may well yield active, highly targeted delivery vectors, suitable for in vivo application in gene therapy.

Journal ArticleDOI
TL;DR: Electrodeposited ferromagnetic nickel nanowires were prepared for efficient internalization into 3T3 fibroblasts and exhibited significant potential as therapeutic and interrogative platforms for biomedicine.
Abstract: Magnetic nanomaterials with multimodal functionalities have emerged as a versatile platform for biomedical applications that range from basic cellular interrogation to clinical nanomedicine. In this work, we have prepared electrodeposited ferromagnetic nickel nanowires for efficient internalization into 3T3 fibroblasts. Agitation of the nanowires by a low external field induced cell death, as assessed by MTT viability assays. The response of the interleukin-6 (IL-6) gene expression of the fibroblasts to nanowire-mediated cellular manipulation was examined by quantitative real-time polymerase chain reaction (qRT-PCR). These nanowires exhibited significant potential as therapeutic and interrogative platforms for biomedicine.

Journal ArticleDOI
TL;DR: A high-resolution in vivo 3D microscopic system for a novel imaging method at the molecular level of breast cancer cells is established, suggesting future utilization of the system in medical applications to improve drug-delivery systems to target the primary and metastatic tumors for made-to-order treatment.
Abstract: The recent advances in nanotechnology have a great potential to improve the prevention, diagnosis, and treatment of human diseases. Nanomaterials for medical applications are expected to grasp pharmacokinetics and the toxicity for application to medical treatment on the aspect of safety of the nanomaterials and nanodevices. We describe a generation of CdSe nanoparticles [quantum dots (QDs)] conjugated with monoclonal anti-HER2 antibody (Trastuzumab), for single molecular in vivo imaging of breast cancer cells. We established a high-resolution in vivo 3D microscopic system for a novel imaging method at the molecular level. The cancer cells expressing HER2 protein were visualized by the nanoparticles in vivo at subcellular resolution, suggesting future utilization of the system in medical applications to improve drug-delivery systems to target the primary and metastatic tumors for made-to-order treatment. We also describe sentinel node navigation using fluorescent nanoparticles for breast cancer surgery in experimental model, which have shown the potential to be an alternative to existing tracers in the detection of the sentinel node if we select the appropriate particle size and wavelength. Future innovation in cancer imaging by nanotechnology and novel measurement technology will provide great improvement, not only in the clinical field but also in basic medical science for the development of medicine.