scispace - formally typeset
Search or ask a question

Showing papers on "Photovoltaic system published in 2018"


Journal ArticleDOI
14 Sep 2018-Science
TL;DR: In this article, a semi-empirical model analysis and using the tandem cell strategy to overcome the low charge mobility of organic materials, leading to a limit on the active-layer thickness and efficient light absorption was performed.
Abstract: Although organic photovoltaic (OPV) cells have many advantages, their performance still lags far behind that of other photovoltaic platforms. A fundamental reason for their low performance is the low charge mobility of organic materials, leading to a limit on the active-layer thickness and efficient light absorption. In this work, guided by a semi-empirical model analysis and using the tandem cell strategy to overcome such issues, and taking advantage of the high diversity and easily tunable band structure of organic materials, a record and certified 17.29% power conversion efficiency for a two-terminal monolithic solution-processed tandem OPV is achieved.

2,165 citations


Journal ArticleDOI
TL;DR: Jeon et al. as discussed by the authors synthesize a fluorene-terminated hole-transporting material with a fine-tuned energy level and a high glass transition temperature to ensure highly efficient and thermally stable perovskite solar cells.
Abstract: Perovskite solar cells (PSCs) require both high efficiency and good long-term stability if they are to be commercialized. It is crucial to finely optimize the energy level matching between the perovskites and hole-transporting materials to achieve better performance. Here, we synthesize a fluorene-terminated hole-transporting material with a fine-tuned energy level and a high glass transition temperature to ensure highly efficient and thermally stable PSCs. We use this material to fabricate photovoltaic devices with 23.2% efficiency (under reverse scanning) with a steady-state efficiency of 22.85% for small-area (~0.094 cm2) cells and 21.7% efficiency (under reverse scanning) for large-area (~1 cm2) cells. We also achieve certified efficiencies of 22.6% (small-area cells, ~0.094 cm2) and 20.9% (large-area, ~1 cm2). The resultant device shows better thermal stability than the device with spiro-OMeTAD, maintaining almost 95% of its initial performance for more than 500 h after thermal annealing at 60 °C. Interfacial losses between device layers play a key role in determining characteristics of solar cells. Jeon et al. address this in perovskite solar cells by synthesizing a hole-transporting layer that is better matched to the surrounding layers, and show high-efficiency and high-stability devices.

1,771 citations


Journal ArticleDOI
21 Sep 2018-Science
TL;DR: Recent progress in addressing stability, how to allow mass production, and how to maintain uniformity of large-area films are reviewed, and the remaining challenges along the pathway to their commercialization are discussed.
Abstract: BACKGROUND Perovskite solar cells (PSCs) have attracted intensive attention because of their ever-increasing power conversion effi­ciency (PCE), low-cost materials constituents, and simple solution fabrication process. Initi­ated in 2009 with an efficiency of 3.8%, PSCs have now achieved a lab-scale power conversion efficiency of 23.3%, rivaling the performance of commercial multicrystalline silicon solar cells, as well as copper indium gallium selenide (CIGS) and cadmium telluride (CdTe) thin-film solar cells. Thousands of articles re­lated to PSCs have been published each year since 2015, highlighting PSCs as a topic of in­tense interest in photovoltaics (PV) research. With high efficiencies achieved in lab devices, stability and remaining challenges in upscal­ing the manufacture of PSCs are two critical concerns that must be addressed on the path to PSC commercialization. ADVANCES We review recent progress in PSCs and discuss the remaining challenges along the pathway to their commercialization. Device configurations of PSCs (see the figure) include mesoscopic formal (n-i-p) and inverted (p-i-n) structures, planar formal and inverted struc­tures, and the printable triple mesoscopic structures. PCEs of devices that use these structures have advanced rapidly in the case of small-area devices (~0.1 cm 2 ). PSCs are also attracting attention as top cells for the construction of tandem solar cells with existing mature PV technologies to increase efficiency beyond the Shockley-Queisser limit of single-junction devices. The stability of PSCs has attracted much well-deserved attention of late, and notable progress has been made in the past few years. PSCs have recently achieved exhibited life­times of 10,000 hours under 1 sun (1 kW/m 2 ) illumina­tion with an ultraviolet filter at a stabilized temperature of 55°C and at short-circuit conditions for a printable triple mesoscopic PSCs. This irradiation is equivalent to the total irradiation of 10 years of outdoor use in most of Europe. However, within the PSC community, standard testing protocols require further development. In addition, transpar­ency in reporting standards on stability tests needs to be improved; this can be achieved by providing both initial photovoltaic performance and normalization parameters. The upscaling of PSCs has also progressed steadily, leading to PSC mini-modules, standard-sized modules, and power systems. PV companies have set out to manufacture large-area PSC modules (see the figure), and a 110-m 2 perovskite PV system with screen-printed triple mesoscopic PSC modules was recently debuted. Studies of these increased-area modules and systems will promote the development of PSCs toward commercializa­tion. PSC research is expanding to cover fundamental topics on materials and lab-sized cells, as well as to address issues of in­dustrial-scale manufacturing and deployment. OUTLOOK The PV market has been continu­ously expanding in recent years, bringing op­portunities for new PV technologies of which PSCs are promising candidates. It is impera­tive to achieve a low cost per watt, which means that both efficiency and lifetime need improve­ment relative to current parameters. The efficiency gap between lab cells and industrial modules has seen impressive reduc­tions in crystalline silicon; PSCs must simi­larly enlarge module areas to the panel level and need to achieve lifetimes comparable to those of legacy PV technologies. Other improvements will need to include industry-scale electronic-grade films, recycling methods to address concerns regarding lead toxicity, and the adoption of standardized testing protocols to predict the operation lifetime of PSCs. Modules will need to endure light-induced degradation, potential-induced degradation, partial-shade stress, and mechanical shock. The field can benefit from lessons learned during the development of mature PV technologies as it strives to de­fine, and overcome, the hurdles to PSC com­mercial impact.

1,160 citations


Journal ArticleDOI
TL;DR: In this article, a review of microgrid drivers, real-world applications, challenges, and future prospects is presented, along with a multi-disciplinary portrait of today's micro-grid drivers.
Abstract: Microgrids are now emerging from lab benches and pilot demonstration sites into commercial markets, driven by technological improvements, falling costs, a proven track record, and growing recognition of their benefits. They are being used to improve reliability and resilience of electrical grids, to manage the addition of distributed clean energy resources like wind and solar photovoltaic (PV) generation to reduce fossil fuel emissions, and to provide electricity in areas not served by centralized electrical infrastructure. This review article (1) explains what a microgrid is, and (2) provides a multi-disciplinary portrait of today's microgrid drivers, real-world applications, challenges, and future prospects.

884 citations


Journal ArticleDOI
TL;DR: In this paper, the authors review recent progress and challenges in scaling up perovskite solar cells and related efforts to enable the terawatt-scale manufacturing and deployment of this PV technology.
Abstract: Perovskite materials use earth-abundant elements, have low formation energies for deposition and are compatible with roll-to-roll and other high-volume manufacturing techniques. These features make perovskite solar cells (PSCs) suitable for terawatt-scale energy production with low production costs and low capital expenditure. Demonstrations of performance comparable to that of other thin-film photovoltaics (PVs) and improvements in laboratory-scale cell stability have recently made scale up of this PV technology an intense area of research focus. Here, we review recent progress and challenges in scaling up PSCs and related efforts to enable the terawatt-scale manufacturing and deployment of this PV technology. We discuss common device and module architectures, scalable deposition methods and progress in the scalable deposition of perovskite and charge-transport layers. We also provide an overview of device and module stability, module-level characterization techniques and techno-economic analyses of perovskite PV modules. Perovskite solar cells (PSCs) have emerged as a revolutionary class of photovoltaic technology. Here, we review recent progress and challenges in scaling up PSCs towards commercialization. We discuss several areas, including device architectures, deposition methods, scalable deposition of perovskite and charge transport layers, device stability, module-level characterization and techno-economic analyses.

679 citations


Journal ArticleDOI
TL;DR: McGehee et al. as discussed by the authors discussed the recent developments in perovskite-based tandem fabrication, and detail directions for future research to take this technology beyond the proof-of-concept stage.
Abstract: Metal halide perovskite semiconductors possess excellent optoelectronic properties, allowing them to reach high solar cell performances. They have tunable bandgaps and can be rapidly and cheaply deposited from low-cost precursors, making them ideal candidate materials for tandem solar cells, either by using perovskites as the wide-bandgap top cell paired with low-bandgap silicon or copper indium diselenide bottom cells or by using both wide- and small-bandgap perovskite semiconductors to make all-perovskite tandem solar cells. This Review highlights the unique potential of perovskite tandem solar cells to reach solar-to-electricity conversion efficiencies far above those of single-junction solar cells at low costs. We discuss the recent developments in perovskite-based tandem fabrication, and detail directions for future research to take this technology beyond the proof-of-concept stage. Perovskites, with their wide bandgap range, are good partners for both commercial and novel photovoltaic technologies in multijunction solar cells. Here, McGehee and co-workers review recent material and device developments and highlight future challenges and opportunities for perovskite-based tandems.

632 citations


Journal ArticleDOI
TL;DR: In this paper, a comprehensive and systematic review of the direct forecasting of PV power generation is presented, where the importance of the correlation of the input-output data and the preprocessing of model input data are discussed.
Abstract: To mitigate the impact of climate change and global warming, the use of renewable energies is increasing day by day significantly. A considerable amount of electricity is generated from renewable energy sources since the last decade. Among the potential renewable energies, photovoltaic (PV) has experienced enormous growth in electricity generation. A large number of PV systems have been installed in on-grid and off-grid systems in the last few years. The number of PV systems will increase rapidly in the future due to the policies of the government and international organizations, and the advantages of PV technology. However, the variability of PV power generation creates different negative impacts on the electric grid system, such as the stability, reliability, and planning of the operation, aside from the economic benefits. Therefore, accurate forecasting of PV power generation is significantly important to stabilize and secure grid operation and promote large-scale PV power integration. A good number of research has been conducted to forecast PV power generation in different perspectives. This paper made a comprehensive and systematic review of the direct forecasting of PV power generation. The importance of the correlation of the input-output data and the preprocessing of model input data are discussed. This review covers the performance analysis of several PV power forecasting models based on different classifications. The critical analysis of recent works, including statistical and machine-learning models based on historical data, is also presented. Moreover, the strengths and weaknesses of the different forecasting models, including hybrid models, and performance matrices in evaluating the forecasting model, are considered in this research. In addition, the potential benefits of model optimization are also discussed.

626 citations


Journal ArticleDOI
TL;DR: Key optoelectronic properties for donor and acceptor organic semiconductors are identified to obtain organic solar cells with reduced open-circuit voltage losses and high power conversion efficiencies.
Abstract: The open-circuit voltage of organic solar cells is usually lower than the values achieved in inorganic or perovskite photovoltaic devices with comparable bandgaps Energy losses during charge separation at the donor–acceptor interface and non-radiative recombination are among the main causes of such voltage losses Here we combine spectroscopic and quantum-chemistry approaches to identify key rules for minimizing voltage losses: (1) a low energy offset between donor and acceptor molecular states and (2) high photoluminescence yield of the low-gap material in the blend Following these rules, we present a range of existing and new donor–acceptor systems that combine efficient photocurrent generation with electroluminescence yield up to 003%, leading to non-radiative voltage losses as small as 021 V This study provides a rationale to explain and further improve the performance of recently demonstrated high-open-circuit-voltage organic solar cells Key optoelectronic properties for donor and acceptor organic semiconductors are identified to obtain organic solar cells with reduced open-circuit voltage losses and high power conversion efficiencies

613 citations


Journal ArticleDOI
TL;DR: Yan et al. as mentioned in this paper used heat treatment to reduce non-radiative recombination within the heterojunction region, which is a major cause of limiting voltage output and overall performance.
Abstract: Sulfide kesterite Cu2ZnSnS4 provides an attractive low-cost, environmentally benign and stable photovoltaic material, yet the record power conversion efficiency for such solar cells has been stagnant at around 9% for years. Severe non-radiative recombination within the heterojunction region is a major cause limiting voltage output and overall performance. Here we report a certified 11% efficiency Cu2ZnSnS4 solar cell with a high 730 mV open-circuit voltage using heat treatment to reduce heterojunction recombination. This heat treatment facilitates elemental inter-diffusion, directly inducing Cd atoms to occupy Zn or Cu lattice sites, and promotes Na accumulation accompanied by local Cu deficiency within the heterojunction region. Consequently, new phases are formed near the hetero-interface and more favourable conduction band alignment is obtained, contributing to reduced non-radiative recombination. Using this approach, we also demonstrate a certified centimetre-scale (1.11 cm2) 10% efficiency Cu2ZnSnS4 photovoltaic device; the first kesterite cell (including selenium-containing) of standard centimetre-size to exceed 10%. The emerging kesterite Cu2ZnSnS4 solar cell offers a potential low-cost, non-toxic, materially abundant platform for next-generation photovoltaics, yet its efficiency has been mired below 10%. Yan et al. now use post-heat treatment of the heterojunction to show device efficiencies that surpass 10%.

586 citations


Journal ArticleDOI
TL;DR: A thermochromic solar cell for smart photovoltaic window applications utilizing the structural phase transitions in inorganic halide perovskite caesium lead iodide/bromide is demonstrated.
Abstract: Smart photovoltaic windows represent a promising green technology featuring tunable transparency and electrical power generation under external stimuli to control the light transmission and manage the solar energy. Here, we demonstrate a thermochromic solar cell for smart photovoltaic window applications utilizing the structural phase transitions in inorganic halide perovskite caesium lead iodide/bromide. The solar cells undergo thermally-driven, moisture-mediated reversible transitions between a transparent non-perovskite phase (81.7% visible transparency) with low power output and a deeply coloured perovskite phase (35.4% visible transparency) with high power output. The inorganic perovskites exhibit tunable colours and transparencies, a peak device efficiency above 7%, and a phase transition temperature as low as 105 °C. We demonstrate excellent device stability over repeated phase transition cycles without colour fade or performance degradation. The photovoltaic windows showing both photoactivity and thermochromic features represent key stepping-stones for integration with buildings, automobiles, information displays, and potentially many other technologies.

578 citations


Journal ArticleDOI
01 Apr 2018-Energy
TL;DR: A novel solar prediction scheme for hourly day-ahead solar irradiance prediction by using the weather forecasting data is proposed and it is demonstrated that the proposed algorithm outperforms these competitive algorithms for single output prediction.

Journal ArticleDOI
TL;DR: In this article, an extensive review on recent advancements in the field of solar photovoltaic power forecasting is presented, which aims to analyze and compare various methods of solar PV power forecasting in terms of characteristics and performance.

Journal ArticleDOI
TL;DR: The effects of different environmental factors and electrical load on the ageing behaviour of perovskite solar cells are investigated and the perceived relevance of the different ways these are currently aged is commented on.
Abstract: Perovskite solar cells have achieved power-conversion efficiency values approaching those of established photovoltaic technologies, making the reliable assessment of their operational stability the next essential step towards commercialization. Although studies increasingly often involve a form of stability characterization, they are conducted in non-standardized ways, which yields data that are effectively incomparable. Furthermore, stability assessment of a novel material system with its own peculiarities might require an adjustment of common standards. Here, we investigate the effects of different environmental factors and electrical load on the ageing behaviour of perovskite solar cells. On this basis, we comment on our perceived relevance of the different ways these are currently aged. We also demonstrate how the results of the experiments can be distorted and how to avoid the common pitfalls. We hope this work will initiate discussion on how to age perovskite solar cells and facilitate the development of consensus stability measurement protocols.

Journal ArticleDOI
Bo Li1, Yanan Zhang1, Lin Fu1, Tong Yu1, Shujie Zhou1, Luyuan Zhang1, Longwei Yin1 
TL;DR: In this article, a polyvinylpyrrolidone (PVP)-induced surface passivation engineering is reported to synthesize extra-long-term stable cubic cesium lead iodides (CsPbI3) for commercial perovskite solar cells.
Abstract: Owing to inevitable thermal/moisture instability for organic–inorganic hybrid perovskites, pure inorganic perovskite cesium lead halides with both inherent stability and prominent photovoltaic performance have become research hotspots as a promising candidate for commercial perovskite solar cells. However, it is still a serious challenge to synthesize desired cubic cesium lead iodides (CsPbI3) with superior photovoltaic performance for its thermodynamically metastable characteristics. Herein, polymer poly-vinylpyrrolidone (PVP)-induced surface passivation engineering is reported to synthesize extra-long-term stable cubic CsPbI3. It is revealed that acylamino groups of PVP induce electron cloud density enhancement on the surface of CsPbI3, thus lowering surface energy, conducive to stabilize cubic CsPbI3 even in micrometer scale. The cubic-CsPbI3 PSCs exhibit extra-long carrier diffusion length (over 1.5 μm), highest power conversion efficiency of 10.74% and excellent thermal/moisture stability. This result provides important progress towards understanding of phase stability in realization of large-scale preparations of efficient and stable inorganic PSCs.

Journal ArticleDOI
TL;DR: The stability issue of perovskite photovoltaics is discussed and a call for standardized protocols for device characterizations that could possibly match the silicon industrial standards is made.
Abstract: When translating photovoltaic technology from laboratory to commercial products, low cost, high power conversion efficiency, and high stability (long lifetime) are the three key metrics to consider in addition to other factors, such as low toxicity, low energy payback time, etc. As one of the most promising photovoltaic materials with high efficiency, today organic–inorganic metal halide perovskites draw tremendous attention from fundamental research, but their practical relevance still remains unclear owing to the notorious short device operation time. In this comment, we discuss the stability issue of perovskite photovoltaics and call for standardized protocols for device characterizations that could possibly match the silicon industrial standards.

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the sources of energy-related emissions, risks of climate change, global solar energy potential, sustainability indicators of renewable energies, environmental impacts of fossil fuels and renewable energies and benefits of solar energy utilization.
Abstract: The growing global demand for energy from fossil fuels plays a key role in the upward trend in greenhouse gas (GHG) emissions and air pollutants. Rapid population growth and increasing energy demand in the developing countries have brought many concerns such as poverty, pollution, health and environmental problems. While for these countries, particularly the poorest ones, modern energy is necessary to stimulate production, income generation and social development plus reduce the serious health issues that are caused by the use of fuelwood, charcoal, animal dung and agricultural waste. Solar energy is the best answer to energy poverty and it can provide excellent opportunities for reduction of GHG emissions and indoor air pollution through substituting kerosene for lighting and firewood for cooking. Solar photovoltaic (PV) can be an appropriate technology for a source of renewable electricity in developing nations especially in remote rural areas where grid extensions are financially or technically not viable. PV can also be used to reduce demand for fossil fuels and associated emissions, including carbon dioxide (CO2), nitrogen oxides (NOx) and sulfur dioxide (SO2). The use of PV systems can reduce 69–100 million tons of CO2, 126,000–184,000 t of SO2 and 68,000–99,000 t of NOx by 2030. In case countries use concentrating solar power (CSP) systems, each square meter of concentrator surface is enough to save about 200–300 kg (kg) of CO2 emissions annually. Although there are excellent renewable opportunities in many developing countries, several key barriers have prevented large-scale deployment of solar energy technologies in these countries. This study reviews the sources of energy-related emissions, risks of climate change, global solar energy potential, sustainability indicators of renewable energies, environmental impacts of fossil fuels and renewable energies, benefits of solar energy utilization. It also discusses barriers to widespread use of solar energy.

Journal ArticleDOI
TL;DR: In this article, the photothermal effect has been used as a novel strategy to augment vaporization and catalysis performance, and the design of efficient photothermal conversion materials in terms of both light harvesting and thermal management.
Abstract: Solar energy is a major source of renewable energy with the potential to meet the energy demand and to support the sustainable development of the world. The efficient harvesting and conversion of solar energy is one of the key factors to maximize the utilization of solar energy. In general, solar energy can be harnessed and converted into various kinds of energy, including electricity, fuels and thermal energy, through photovoltaic, photochemical and photothermal processes, respectively. Among these technologies, photothermal conversion is a direct conversion process that has attained the highest achievable conversion efficiency. The photothermal effect has been used as a novel strategy to augment vaporization and catalysis performance. In this review, we look into the basis of the photothermal conversion process, the design of efficient photothermal conversion materials in terms of both light harvesting and thermal management, a fundamental understanding of various system schemes, and the recent progress in photothermal evaporation and catalysis applications. This review aims to afford researchers with a better understanding of the photothermal effect and provide a guide for the rational design and development of highly efficient photothermal materials in energy and environmental fields.

Journal ArticleDOI
TL;DR: This work presents detailed protocols for preparing PSCs in regular (n–i–p) and inverted (p–i-n) architectures with ≥20% PCE and encourages the practice of reporting detailed and transparent protocols that can be more easily reproduced by other laboratories.
Abstract: Perovskite solar cells (PSCs) are currently one of the most promising photovoltaic technologies for highly efficient and cost-effective solar energy production. In only a few years, an unprecedented progression of preparation procedures and material compositions delivered lab-scale devices that have now reached record power conversion efficiencies (PCEs) higher than 20%, competing with most established solar cell materials such as silicon, CIGS, and CdTe. However, despite a large number of researchers currently involved in this topic, only a few groups in the world can reproduce >20% efficiencies on a regular n–i–p architecture. In this work, we present detailed protocols for preparing PSCs in regular (n–i–p) and inverted (p–i–n) architectures with ≥20% PCE. We aim to provide a comprehensive, reproducible description of our device fabrication protocols. We encourage the practice of reporting detailed and transparent protocols that can be more easily reproduced by other laboratories. A better reporting sta...

Journal ArticleDOI
TL;DR: It is demonstrated that polythiophene, deposited on the top of CsPbI2 Br, can significantly reduce electron-hole recombination within the perovskite, which is due to the electronic passivation of surface defect states, and the interfacial properties are improved by a simple annealing process.
Abstract: Cesium-based trihalide perovskites have been demonstrated as promising light absorbers for photovoltaic applications due to their superb composition stability. However, the large energy losses (Eloss ) observed in inorganic perovskite solar cells has become a major hindrance impairing the ultimate efficiency. Here, an effective and reproducible method of modifying the interface between a CsPbI2 Br absorber and polythiophene hole-acceptor to minimize the Eloss is reported. It is demonstrated that polythiophene, deposited on the top of CsPbI2 Br, can significantly reduce electron-hole recombination within the perovskite, which is due to the electronic passivation of surface defect states. In addition, the interfacial properties are improved by a simple annealing process, leading to significantly reduced energy disorder in polythiophene and enhanced hole-injection into the hole-acceptor. Consequently, one of the highest power conversion efficiency (PCE) of 12.02% from a reverse scan in inorganic mixed-halide perovskite solar cells is obtained. Modifying the perovskite films with annealing polythiophene enables an open-circuit voltage (VOC ) of up to 1.32 V and Eloss of down to 0.5 eV, which both are the optimal values reported among cesium-lead mixed-halide perovskite solar cells to date. This method provides a new route to further improve the efficiency of perovskite solar cells by minimizing the Eloss .


Journal ArticleDOI
TL;DR: This work proposed a data-driven approach for scenario generation using generative adversarial networks, which is based on two interconnected deep neural networks that captures renewable energy production patterns in both temporal and spatial dimensions for a large number of correlated resources.
Abstract: Scenario generation is an important step in the operation and planning of power systems with high renewable penetrations. In this work, we proposed a data-driven approach for scenario generation using generative adversarial networks, which is based on two interconnected deep neural networks. Compared with existing methods based on probabilistic models that are often hard to scale or sample from, our method is data-driven, and captures renewable energy production patterns in both temporal and spatial dimensions for a large number of correlated resources. For validation, we use wind and solar times-series data from NREL integration data sets. We demonstrate that the proposed method is able to generate realistic wind and photovoltaic power profiles with full diversity of behaviors. We also illustrate how to generate scenarios based on different conditions of interest by using labeled data during training. For example, scenarios can be conditioned on weather events (e.g., high wind day, intense ramp events, or large forecasts errors) or time of the year (e.g., solar generation for a day in July). Because of the feedforward nature of the neural networks, scenarios can be generated extremely efficiently without sophisticated sampling techniques.

Journal ArticleDOI
TL;DR: In this paper, optimal sizing of a PV/wind/diesel HMS with battery storage is conducted using the Multi-Objective Self-Adaptive Differential Evolution (MOSaDE) algorithm for the city of Yanbu, Saudi Arabia using the multi-objective optimization approach.

Journal ArticleDOI
TL;DR: This paper presents a preliminary study on how to review solar irradiance and photovoltaic power forecasting using text mining, which serves as the first part of a forthcoming series of text mining applications in solar forecasting.

Journal ArticleDOI
TL;DR: The preliminary efficiency and the high stability under ambient condition without encapsulation, together with the high film quality with simple processing, demonstrate promise for lead‐free perovskite solar cells.
Abstract: Recently, lead-free double perovskites have emerged as a promising environmentally friendly photovoltaic material for their intrinsic thermodynamic stability, appropriate bandgaps, small carrier effective masses, and low exciton binding energies. However, currently no solar cell based on these double perovskites has been reported, due to the challenge in film processing. Herein, a first lead-free double perovskite planar heterojunction solar cell with a high quality Cs2AgBiBr6 film, fabricated by low-pressure assisted solution processing under ambient conditions, is reported. The device presents a best power conversion efficiency of 1.44%. The preliminary efficiency and the high stability under ambient condition without encapsulation, together with the high film quality with simple processing, demonstrate promise for lead-free perovskite solar cells.

Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of state-of-the-art progress on the integrated solar cell devices based on DSSC and PSC, such as DSSCs/LIB, DSSc/PESC, PSC/PSC, SSC/SSC, OSC/SC, PSSC/SC/OSC, DSC/NG, NSC/NSC, PSC/NSCS, and PESC/ELC, for energy harvesting and storage.
Abstract: The sharp increase of research passion in the new-generation solar cells in recent years has resulted in a new trend in combining multiple types of energy devices in a single device. In view of the enhanced and/or diversified function of integrated devices, as compared with conventional devices with limited performance or sole applicability, many integrated power packs have been widely developed by combining different devices, such as a silicon solar cell (SSC), Cu(In,Ga)(Sn,Se)2 (CIGS), organic solar cell (OSC), dye-sensitized solar cell (DSSC), perovskite solar cell (PSC), lithium-ion battery (LIB), nanogenerator (NG), supercapacitor (SC), photoelectrosynthetic cell (PESC), and electrolysis cell (ELC), into one unit. In this Review, with a particular emphasis on their recent advances, we cover the integrated solar cell device research in a broad sense and provide an overview of state-of-the-art progress on the integrated solar cell devices based on DSSC and PSC, such as DSSC/LIB, DSSC/SC, DSSC/NG, DSSC/LIB/NG, PSC/OSC, PSC/CIGS, PSC/PSC, PSC/SSC, SSC/SC, PSC/SC, OSC/SC, DSSC/PESC, PSC/PESC, and PSC/ELC, for energy harvesting and storage that are significantly important for self-powering systems and portable/wearable electronics. Finally, the challenges and future outlooks in this promising photovoltaic (PV) field are featured on the basis of current development.

Journal ArticleDOI
TL;DR: In this paper, the authors focused on the heterogeneous photocatalytic water splitting and on CO2 reduction with nanostructured semiconductors, metals, and their hybrids.
Abstract: The inexorable rise of carbon dioxide level in the atmosphere, already exceeding 400 ppm, highlights the need for reduction of CO2 emissions. Harvesting solar energy to drive reverse chemical reactions to fuel combustion offers a possible solution. The produced chemical fuels (e.g. hydrogen, methane, or methanol) are also a convenient means of energy storage, not available in photovoltaic cells. This Review is focused on the heterogeneous photocatalytic water splitting and on CO2 reduction with nanostructured semiconductors, metals, and their hybrids. The stages of light absorption, charge separation and transfer, and surface reactions are discussed, together with possible energy-loss mechanisms and means of their elimination. Many novel materials have been developed in this active field of research, and this Review describes the concepts underpinning the continued progress in the field. The approaches which hold promise for substantial improvement in terms of efficiency, cost, and environmental sustainab...

Journal ArticleDOI
Qingxia Fu1, Xianglan Tang1, Bin Huang1, Ting Hu1, Licheng Tan1, Lie Chen1, Yiwang Chen1 
TL;DR: This review is expected to provide helpful insights for further enhancing the stability of perovskite materials and PVSCs in this exciting field of thin film solar cell technology.
Abstract: As rapid progress has been achieved in emerging thin film solar cell technology, organic-inorganic hybrid perovskite solar cells (PVSCs) have aroused many concerns with several desired properties for photovoltaic applications, including large absorption coefficients, excellent carrier mobility, long charge carrier diffusion lengths, low-cost, and unbelievable progress. Power conversion efficiencies increased from 3.8% in 2009 up to the current world record of 22.1%. However, poor long-term stability of PVSCs limits the future commercial application. Here, the degradation mechanisms for unstable perovskite materials and their corresponding solar cells are discussed. The strategies for enhancing the stability of perovskite materials and PVSCs are also summarized. This review is expected to provide helpful insights for further enhancing the stability of perovskite materials and PVSCs in this exciting field.

Journal ArticleDOI
TL;DR: In this article, an obvious enhancement of power conversion efficiency for ZnO/Cu2O solar cells with perfectly oriented and micrometer grain sized Cu2O films was experimentally demonstrated.
Abstract: Cu2O is one of the attractive photovoltaic materials for solar cells because of its low cost, nontoxicity, and good mobility. In this paper, an obvious enhancement of power conversion efficiency (PCE) for ZnO/Cu2O solar cells with perfectly oriented and micrometer grain sized Cu2O films was experimentally demonstrated. Cu2O was fabricated using radical oxidation of Cu foils at a low temperature of 500 °C. When followed by a rapid quenching and post annealing treatment, the perfectly oriented and micrometer sized Cu2O crystals (3∼4 μm) could be obtained. The crystal structure and optical properties of Cu2O were investigated in detail. Compared to conventional solar cells without any treatment, the PCE of the solar cells based on Cu2O with treatment was 3.18%, corresponding to a significant PCE improvement of 60.6%.

Journal ArticleDOI
TL;DR: Different energy-harvesting technologies were compared in terms of power output, cost-effectiveness, technology readiness level, advantages and disadvantages, support from government and industry, and future research recommendations of energy harvesting in roadway and bridge were proposed.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the recent advances in the nanofluids' applications in solar energy systems, i.e., solar collectors, photovoltaic/thermal (PV/T) systems, solar thermoelectric devices, solar water heaters, solar-geothermal combined cooling heating and power system (CCHP), evaporative cooling for greenhouses, and water desalination.
Abstract: Solar energy systems (SESs) are considered as one of the most important alternatives to conventional fossil fuels, due to its ability to convert solar energy directly into heat and electricity without any negative environmental impact such as greenhouse gas emissions. Utilizing nanofluid as a potential heat transfer fluid with superior thermophysical properties is an effective method to enhance the thermal performance of solar energy systems. The purpose of this review paper is the investigation of the recent advances in the nanofluids’ applications in solar energy systems, i.e., solar collectors (SCs), photovoltaic/thermal (PV/T) systems, solar thermoelectric devices, solar water heaters, solar-geothermal combined cooling heating and power system (CCHP), evaporative cooling for greenhouses, and water desalination.