scispace - formally typeset
Search or ask a question

Showing papers on "Plasmodium vivax published in 2013"


Journal ArticleDOI
TL;DR: The shift in the populations most at risk of malaria raises important questions for malaria-eliminating countries, since traditional control interventions are likely to be less effective.

556 citations


Journal ArticleDOI
TL;DR: ELQ-300, a 4(1H)-quinolone-3-diarylether, which targets the liver and blood stages, including the forms that are crucial to disease transmission (gametocytes, zygotes, and ookinetes), has potential as a new drug for the treatment, prevention, and, ultimately, eradication of human malaria.
Abstract: The goal for developing new antimalarial drugs is to find a molecule that can target multiple stages of the parasite's life cycle, thus impacting prevention, treatment, and transmission of the disease. The 4(1H)-quinolone-3-diarylethers are selective potent inhibitors of the parasite's mitochondrial cytochrome bc1 complex. These compounds are highly active against the human malaria parasites Plasmodium falciparum and Plasmodium vivax. They target both the liver and blood stages of the parasite as well as the forms that are crucial for disease transmission, that is, the gametocytes, the zygote, the ookinete, and the oocyst. Selected as a preclinical candidate, ELQ-300 has good oral bioavailability at efficacious doses in mice, is metabolically stable, and is highly active in blocking transmission in rodent models of malaria. Given its predicted low dose in patients and its predicted long half-life, ELQ-300 has potential as a new drug for the treatment, prevention, and, ultimately, eradication of human malaria.

296 citations


Journal ArticleDOI
TL;DR: Vivax malaria threatens patients despite relatively low-grade parasitemias in peripheral blood, and a systematic analysis of the parasite biomass in severely ill patients that includes blood, marrow, and spleen may ultimately explain this historic misunderstanding.
Abstract: Vivax malaria threatens patients despite relatively low-grade parasitemias in peripheral blood. The tenet of death as a rare outcome, derived from antiquated and flawed clinical classifications, disregarded key clinical evidence, including (i) high rates of mortality in neurosyphilis patients treated with vivax malaria; (ii) significant mortality from zones of endemicity; and (iii) the physiological threat inherent in repeated, very severe paroxysms in any patient, healthy or otherwise. The very well-documented course of this infection, with the exception of parasitemia, carries all of the attributes of “perniciousness” historically linked to falciparum malaria, including severe disease and fatal outcomes. A systematic analysis of the parasite biomass in severely ill patients that includes blood, marrow, and spleen may ultimately explain this historic misunderstanding. Regardless of how this parasite is pernicious, recent data demonstrate that the infection comes with a significant burden of morbidity and associated mortality. The extraordinary burden of malaria is not heavily weighted upon any single continent by a single species of parasite—it is a complex problem for the entire endemic world, and both species are of fundamental importance. Humanity must rally substantial resources, intellect, and energy to counter this daunting but profound threat.

292 citations


Journal ArticleDOI
TL;DR: Human-adapted P. knowlesi clones maintain their capacity to replicate in monkey erythrocytes and can be genetically modified with unprecedented efficiency, providing an important and unique model for studying conserved aspects of malarial biology as well as species-specific features of an emerging pathogen.
Abstract: Research into the aetiological agent of the most widespread form of severe malaria, Plasmodium falciparum, has benefitted enormously from the ability to culture and genetically manipulate blood-stage forms of the parasite in vitro. However, most malaria outside Africa is caused by a distinct Plasmodium species, Plasmodium vivax, and it has become increasingly apparent that zoonotic infection by the closely related simian parasite Plasmodium knowlesi is a frequent cause of life-threatening malaria in regions of southeast Asia. Neither of these important malarial species can be cultured in human cells in vitro, requiring access to primates with the associated ethical and practical constraints. We report the successful adaptation of P. knowlesi to continuous culture in human erythrocytes. Human-adapted P. knowlesi clones maintain their capacity to replicate in monkey erythrocytes and can be genetically modified with unprecedented efficiency, providing an important and unique model for studying conserved aspects of malarial biology as well as species-specific features of an emerging pathogen.

233 citations


Journal ArticleDOI
TL;DR: Primaquine is used to eradicate the hepatic or hypnozoite form of Plasmodium vivax that may lead to relapse of infection.
Abstract: Primaquine is used to eradicate the hepatic or hypnozoite form of Plasmodium vivax that may lead to relapse of infection. Host genetic factors may play a role in the activity of primaquine therapy.

226 citations


Journal ArticleDOI
TL;DR: Plasmodium knowlesi is the commonest cause of severe malaria at QEH, with parasitemia the major risk factor for severity, and early referral and treatment with artesunate was highly effective for severe malaria from all species and associated with zero mortality.
Abstract: Background Plasmodium knowlesi commonly causes severe malaria in Malaysian Borneo, with high case-fatality rates reported. We compared risk, spectrum, and outcome of severe disease from P. knowlesi, Plasmodium falciparum, and Plasmodium vivax and outcomes following introduction of protocols for early referral and intravenous artesunate for all severe malaria. Methods From September 2010 to October 2011 we prospectively assessed nonpregnant patients aged ≥12 years admitted to Queen Elizabeth Hospital (QEH), Sabah, with polymerase chain reaction-confirmed Plasmodium monoinfection. Standardized referral and prereferral intravenous artesunate were instituted at district hospitals. Results Severe malaria occurred in 38 of 130 (29%) patients with P. knowlesi, 13 of 122 (11%) with P. falciparum, and 7 of 43 (16%) with P. vivax. The commonest severity criteria in knowlesi malaria included parasitemia >100 000/µL (n = 18), jaundice (n = 20), respiratory distress (n = 14), hypotension (n = 13), and acute kidney injury (n = 9). On multivariate analysis, P. knowlesi was associated with a 2.96-fold (95% confidence interval, 1.19-7.38-fold) greater risk of severity than P. falciparum (P = .020); only parasitemia and schizontemia >10% independently predicted knowlesi severity. Risk of severe knowlesi malaria increased 11-fold with parasitemia >20 000/µL, and 28-fold with parasitemia >100 000/µL. Nearly all (92%) knowlesi malaria patients received oral artemisinin therapy; 36 of 38 (95%) and 39 of 92 (42%) with severe and nonsevere disease, respectively, also received ≥1 dose of intravenous artesunate. No deaths occurred from any species. Conclusions Plasmodium knowlesi is the commonest cause of severe malaria at QEH, with parasitemia the major risk factor for severity. Early referral and treatment with artesunate was highly effective for severe malaria from all species and associated with zero mortality.

224 citations


Book ChapterDOI
TL;DR: This chapter reviews the past and current data on G6PD deficiency and primaquine-induced haemolysis, which is becoming increasingly important as several nations now consider strategies to eliminate malaria transmission rather than control its clinical burden.
Abstract: Glucose-6-phosphate dehydrogenase (G6PD) is a potentially pathogenic inherited enzyme abnormality and, similar to other human red blood cell polymorphisms, is particularly prevalent in historically malaria endemic countries. The spatial extent of Plasmodium vivax malaria overlaps widely with that of G6PD deficiency; unfortunately the only drug licensed for the radical cure and relapse prevention of P. vivax, primaquine, can trigger severe haemolytic anaemia in G6PD deficient individuals. This chapter reviews the past and current data on this unique pharmacogenetic association, which is becoming increasingly important as several nations now consider strategies to eliminate malaria transmission rather than control its clinical burden. G6PD deficiency is a highly variable disorder, in terms of spatial heterogeneity in prevalence and molecular variants, as well as its interactions with P. vivax and primaquine. Consideration of factors including aspects of basic physiology, diagnosis, and clinical triggers of primaquine-induced haemolysis is required to assess the risks and benefits of applying primaquine in various geographic and demographic settings. Given that haemolytically toxic antirelapse drugs will likely be the only therapeutic options for the coming decade, it is clear that we need to understand in depth G6PD deficiency and primaquine-induced haemolysis to determine safe and effective therapeutic strategies to overcome this hurdle and achieve malaria elimination.

200 citations


Journal ArticleDOI
TL;DR: In this paper, the liver stages for both Plasmodium falciparum and PlasModium vivax were established in a micro-scale human liver platform composed of cryopreserved, micropatterned human primary hepatocytes surrounded by supportive stromal cells.

182 citations


Journal ArticleDOI
TL;DR: Although dihydroartemisinin-piperaquine appears to be an appropriate new first-line treatment for P. vivax in Cambodia, alternative treatments are urgently needed forP.
Abstract: We describe here the results of antimalarial therapeutic efficacy studies conducted in Cambodia from 2008 to 2010. A total of 15 studies in four sentinel sites were conducted using dihydroartemisinin-piperaquine (DP) for the treatment of Plasmodium falciparum infection and chloroquine (CQ) and DP for the treatment of P. vivax infection. All studies were performed according to the standard World Health Organization protocol for the assessment of antimalarial treatment efficacy. Among the studies of DP for the treatment of P. falciparum, an increase in treatment failure was observed in the western provinces. In 2010, the PCR-corrected treatment failure rates for DP on day 42 were 25% (95% confidence interval [CI] = 10 to 51%) in Pailin and 10.7% (95% CI = 4 to 23%) in Pursat, while the therapeutic efficacy of DP remained high (100%) in Ratanakiri and Preah Vihear provinces, located in northern and eastern Cambodia. For the studies of P. vivax, the day 28 uncorrected treatment failure rate among patients treated with CQ ranged from 4.4 to 17.4%; DP remained 100% effective in all sites. Further study is required to investigate suspected P. falciparum resistance to piperaquine in western Cambodia; the results of in vitro and molecular studies were not found to support the therapeutic efficacy findings. The emergence of artemisinin resistance in this region has likely put additional pressure on piperaquine. Although DP appears to be an appropriate new first-line treatment for P. vivax in Cambodia, alternative treatments are urgently needed for P. falciparum-infected patients in western Cambodia.

175 citations


Journal ArticleDOI
TL;DR: Francois Nosten and colleagues evaluate malaria prevalence and incidence in the mobile population on the Myanmar side of the border with Thailand between 1999 and 2011 and also assess resistance to artemisinin.
Abstract: Background The Shoklo Malaria Research Unit has been working on the Thai–Myanmar border for 25 y providing early diagnosis and treatment (EDT) of malaria. Transmission of Plasmodium falciparum has declined, but resistance to artesunate has emerged. We expanded malaria activities through EDT and evaluated the impact over a 12-y period. Methods and Findings Between 1 October 1999 and 30 September 2011, the Shoklo Malaria Research Unit increased the number of cross-border (Myanmar side) health facilities from two to 11 and recorded the number of malaria consultations. Changes in malaria incidence were estimated from a cohort of pregnant women, and prevalence from cross-sectional surveys. In vivo and in vitro antimalarial drug efficacy were monitored. Over this period, the number of malaria cases detected increased initially, but then declined rapidly. In children under 5 y, the percentage of consultations due to malaria declined from 78% (95% CI 76–80) (1,048/1,344 consultations) to 7% (95% CI 6.2–7.1) (767/11,542 consultations), p<0.001. The ratio of P. falciparum/P. vivax declined from 1.4 (95% CI 1.3–1.4) to 0.7 (95% CI 0.7–0.8). The case fatality rate was low (39/75,126; 0.05% [95% CI 0.04–0.07]). The incidence of malaria declined from 1.1 to 0.1 episodes per pregnant women-year. The cumulative proportion of P. falciparum decreased significantly from 24.3% (95% CI 21.0–28.0) (143/588 pregnant women) to 3.4% (95% CI 2.8–4.3) (76/2,207 pregnant women), p<0.001. The in vivo efficacy of mefloquine-artesunate declined steadily, with a sharp drop in 2011 (day-42 PCR-adjusted cure rate 42% [95% CI 20–62]). The proportion of patients still slide positive for malaria at day 3 rose from 0% in 2000 to reach 28% (95% CI 13–45) (8/29 patients) in 2011. Conclusions Despite the emergence of resistance to artesunate in P. falciparum, the strategy of EDT with artemisinin-based combination treatments has been associated with a reduction in malaria in the migrant population living on the Thai–Myanmar border. Although limited by its observational nature, this study provides useful data on malaria burden in a strategically crucial geographical area. Alternative fixed combination treatments are needed urgently to replace the failing first-line regimen of mefloquine and artesunate. Please see later in the article for the Editors' Summary

166 citations


Journal ArticleDOI
TL;DR: A significant recent increase has occurred in P. knowlesi notifications following reduced transmission of the human Plasmodium species, and this trend threatens malaria elimination.
Abstract: Background The simian parasite Plasmodium knowlesi is a common cause of human malaria in Malaysian Borneo and threatens the prospect of malaria elimination. However, little is known about the emergence of P. knowlesi, particularly in Sabah. We reviewed Sabah Department of Health records to investigate the trend of each malaria species over time. Methods Reporting of microscopy-diagnosed malaria cases in Sabah is mandatory. We reviewed all available Department of Health malaria notification records from 1992–2011. Notifications of P. malariae and P. knowlesi were considered as a single group due to microscopic near-identity. Results From 1992–2011 total malaria notifications decreased dramatically, with P. falciparum peaking at 33,153 in 1994 and decreasing 55-fold to 605 in 2011, and P. vivax peaking at 15,857 in 1995 and decreasing 25-fold to 628 in 2011. Notifications of P. malariae/P. knowlesi also demonstrated a peak in the mid-1990s (614 in 1994) before decreasing to ≈100/year in the late 1990s/early 2000s. However, P. malariae/P. knowlesi notifications increased >10-fold between 2004 (n = 59) and 2011 (n = 703). In 1992 P. falciparum, P. vivax and P. malariae/P. knowlesi monoinfections accounted for 70%, 24% and 1% respectively of malaria notifications, compared to 30%, 31% and 35% in 2011. The increase in P. malariae/P. knowlesi notifications occurred state-wide, appearing to have begun in the southwest and progressed north-easterly. Conclusions A significant recent increase has occurred in P. knowlesi notifications following reduced transmission of the human Plasmodium species, and this trend threatens malaria elimination. Determination of transmission dynamics and risk factors for knowlesi malaria is required to guide measures to control this rising incidence.

Journal ArticleDOI
TL;DR: An update on knowledge acquired in the past decade on P. falciparum and P.vivax infections in pregnancy and resistance is a concern, SP has been shown to be equivalent to MQ and AQ for IPTp.
Abstract: Pregnant women have a higher risk of malaria compared to non-pregnant women. This review provides an update on knowledge acquired in the past decade on P. falciparum and P.vivax infections in pregnancy. Maternal risk factors for malaria in pregnancy (MiP) include low maternal age, low gravidity, and low gestational age. The effects of MIP include maternal anaemia, low birth weight (LBW), preterm delivery and increased infant mortality. P. falciparum infected erythrocytes sequester in the placenta by expressing surface antigens, mainly variant surface antigen (VAR2CSA), that bind to specific receptors, mainly chondroitin sulphate A. In stable transmission settings, the higher malaria risk in primigravidae can be explained by the non recognition of these surface antigens by the immune system. Recently, placental sequestration has been described also for P.vivax infections. The mechanism of preterm delivery and intrauterine growth retardation is not completely understood, but fever (preterm delivery), anaemia, and high cytokines levels have been implicated. Clinical suspicion of MiP should be confirmed by parasitological diagnosis. The sensitivity of microscopy, with placenta histology as the gold standard, is 60% and 45% for peripheral and placental falciparum infections, respectively. Compared to microscopy, RDTs have a lower sensitivity. Insecticide treated nets (ITN) and intermittent preventive treatment in pregnancy (IPTp) are recommended for the prevention of MiP in stable transmission settings. ITNs have been shown to reduce malaria infection and adverse pregnancy outcomes by 28-47%. Although resistance is a concern, SP has been shown to be equivalent to MQ and AQ for IPTp. For the treatment of uncomplicated malaria, a combination of quinine + clyndamycin is recommended in all trimesters, while artesunate+ clindamycin or any other ACT known to be effective in the region are recommended in the second and third trimesters. For severe malaria, quinine (parenteral) is recommended in the first trimester while artesunate (parenteral) is recommended in the second and third trimesters.

Journal ArticleDOI
TL;DR: G6PD variants exhibited distinctive region-specific distributions with important primaquine policy implications, and relative homogeneity in the Americas, Africa, and western Asia contrasted sharply with the heterogeneity of variants in China, Southeast Asia and Oceania.
Abstract: Primaquine is essential for malaria control and elimination since it is the only available drug preventing multiple clinical attacks by relapses of Plasmodium vivax. It is also the only therapy against the sexual stages of Plasmodium falciparum infectious to mosquitoes, and is thus useful in preventing malaria transmission. However, the difficulties of diagnosing glucose-6-phosphate dehydrogenase deficiency (G6PDd) greatly hinder primaquine’s widespread use, as this common genetic disorder makes patients susceptible to potentially severe and fatal primaquine-induced haemolysis. The risk of such an outcome varies widely among G6PD gene variants. A literature review was conducted to identify surveys of G6PD variant frequencies among representative population groups. Informative surveys were assembled into two map series: (1) those showing the relative proportions of the different variants among G6PDd individuals; and (2) those showing allele frequencies of G6PD variants based on population surveys without prior G6PDd screening. Variants showed conspicuous geographic patterns. A limited repertoire of variants was tested for across sub-Saharan Africa, which nevertheless indicated low genetic heterogeneity predominated by the G6PD A- 202A mutation, though other mutations were common in western Africa. The severe G6PD Mediterranean variant was widespread across western Asia. Further east, a sharp shift in variants was identified, with high variant heterogeneity in the populations of China and the Asia-Pacific where no single variant dominated. G6PD variants exhibited distinctive region-specific distributions with important primaquine policy implications. Relative homogeneity in the Americas, Africa, and western Asia contrasted sharply with the heterogeneity of variants in China, Southeast Asia and Oceania. These findings will inform rational risk assessments for primaquine in developing public health strategies for malaria control and elimination, and support the future development of regionally targeted policies. The major knowledge gaps highlighted here strongly advocate for further investigation of G6PD variant diversity and their primaquine-sensitivity phenotypes.

Journal ArticleDOI
TL;DR: Microscopy does not reliably distinguish between P. falciparum, P. vivax and P. knowlesi in a region where all three species frequently occur, and supports the use of unified blood-stage treatment strategies for all Plasmodium species.
Abstract: In areas co-endemic for multiple Plasmodium species, correct diagnosis is crucial for appropriate treatment and surveillance. Species misidentification by microscopy has been reported in areas co-endemic for vivax and falciparum malaria, and may be more frequent in regions where Plasmodium knowlesi also commonly occurs. This prospective study in Sabah, Malaysia, evaluated the accuracy of routine district and referral hospital-based microscopy, and microscopy performed by an experienced research microscopist, for the diagnosis of PCR-confirmed Plasmodium falciparum, P. knowlesi, and Plasmodium vivax malaria. A total of 304 patients with PCR-confirmed Plasmodium infection were enrolled, including 130 with P. knowlesi, 122 with P. falciparum, 43 with P. vivax, one with Plasmodium malariae and eight with mixed species infections. Among patients with P. knowlesi mono-infection, routine and cross-check microscopy both identified 94 (72%) patients as “P. malariae/P. knowlesi”; 17 (13%) and 28 (22%) respectively were identified as P. falciparum, and 13 (10%) and two (1.5%) as P. vivax. Among patients with PCR-confirmed P. falciparum, routine and cross-check microscopy identified 110/122 (90%) and 112/118 (95%) patients respectively as P. falciparum, and 8/122 (6.6%) and 5/118 (4.2%) as “P. malariae/P. knowlesi”. Among those with P. vivax, 23/43 (53%) and 34/40 (85%) were correctly diagnosed by routine and cross-check microscopy respectively, while 13/43 (30%) and 3/40 (7.5%) patients were diagnosed as “P. malariae/P. knowlesi”. Four of 13 patients with PCR-confirmed P. vivax and misdiagnosed by routine microscopy as “P. malariae/P. knowlesi” were subsequently re-admitted with P. vivax malaria. Microscopy does not reliably distinguish between P. falciparum, P. vivax and P. knowlesi in a region where all three species frequently occur. Misdiagnosis of P. knowlesi as both P. vivax and P. falciparum, and vice versa, is common, potentially leading to inappropriate treatment, including chloroquine therapy for P. falciparum and a lack of anti-relapse therapy for P. vivax. The limitations of microscopy in P. knowlesi-endemic areas supports the use of unified blood-stage treatment strategies for all Plasmodium species, the development of accurate rapid diagnostic tests suitable for all species, and the use of PCR-confirmation for accurate surveillance.

Journal ArticleDOI
TL;DR: In this report from a stakeholder meeting held in Thailand on October 4 and 5, 2012, G6PD testing in support of radical cure is discussed in detail and challenges related to the development and evaluation of G6 PD diagnostic tests are focused on.
Abstract: Malaria elimination will be possible only with serious attempts to address asymptomatic infection and chronic infection by both Plasmodium falciparum and Plasmodium vivax. Currently available drugs that can completely clear a human of P. vivax (known as “radical cure”), and that can reduce transmission of malaria parasites, are those in the 8-aminoquinoline drug family, such as primaquine. Unfortunately, people with glucose-6-phosphate dehydrogenase (G6PD) deficiency risk having severe adverse reactions if exposed to these drugs at certain doses. G6PD deficiency is the most common human enzyme defect, affecting approximately 400 million people worldwide. Scaling up radical cure regimens will require testing for G6PD deficiency, at two levels: 1) the individual level to ensure safe case management, and 2) the population level to understand the risk in the local population to guide Plasmodium vivax treatment policy. Several technical and operational knowledge gaps must be addressed to expand access to G6PD deficiency testing and to ensure that a patient’s G6PD status is known before deciding to administer an 8-aminoquinoline-based drug. In this report from a stakeholder meeting held in Thailand on October 4 and 5, 2012, G6PD testing in support of radical cure is discussed in detail. The focus is on challenges to the development and evaluation of G6PD diagnostic tests, and on challenges related to the operational aspects of implementing G6PD testing in support of radical cure. The report also describes recommendations for evaluation of diagnostic tests for G6PD deficiency in support of radical cure.

Journal ArticleDOI
TL;DR: Design limitations of RDTs include poor sensitivity at low parasite densities, susceptibility to the prozone effect, false-negative results due to PfHRP2 deficiency in the case of pfhrp2 gene deletions, cross-reactions between Plasmodium antigens and detection antibodies,false-positive results by other infections and susceptibility to heat and humidity.

Journal ArticleDOI
TL;DR: The operational success of this diagnostic set-up proved that molecular testing and subsequent treatment is logistically achievable in field settings and will allow the detection of clusters of asymptomatic carriers and to provide useful epidemiological information.
Abstract: To achieve the goal of malaria elimination in low transmission areas such as in Cambodia, new, inexpensive, high-throughput diagnostic tools for identifying very low parasite densities in asymptomatic carriers are required. This will enable a switch from passive to active malaria case detection in the field. DNA extraction and real-time PCR assays were implemented in an “in-house” designed mobile laboratory allowing implementation of a robust, sensitive and rapid malaria diagnostic strategy in the field. This tool was employed in a survey organized in the context of the MalaResT project (NCT01663831). The real-time PCR screening and species identification assays were performed in the mobile laboratory between October and November 2012, in Rattanakiri Province, to screen approximately 5,000 individuals in less than four weeks and treat parasite carriers within 24–48 hours after sample collection. An average of 240 clinical samples (and 40 quality control samples) was tested every day, six/seven days per week. Some 97.7% of the results were available <24 hours after the collection. A total of 4.9% were positive for malaria. Plasmodium vivax was present in 61.1% of the positive samples, Plasmodium falciparum in 45.9%, Plasmodium malariae in 7.0% and Plasmodium ovale in 2.0%. The operational success of this diagnostic set-up proved that molecular testing and subsequent treatment is logistically achievable in field settings. This will allow the detection of clusters of asymptomatic carriers and to provide useful epidemiological information. Fast results will be of great help for staff in the field to track and treat asymptomatic parasitaemic cases. The concept of the mobile laboratory could be extended to other countries for the molecular detection of malaria or other pathogens, or to culture vivax parasites, which does not support long-time delay between sample collection and culture.

Journal ArticleDOI
TL;DR: Improvements to the diagnosis of G6PD deficiency are required for the broader and safer use of 8-aminoquinolines to kill hypnozoites, while lower doses of primaquine may be safely used to kill gametocytes without testing.
Abstract: The diagnosis and management of glucose-6-phosphate dehydrogenase (G6PD) deficiency is a crucial aspect in the current phases of malaria control and elimination, which will require the wider use of 8-aminoquinolines for both reducing Plasmodium falciparum transmission and achieving the radical cure of Plasmodium vivax. 8-aminoquinolines, such as primaquine, can induce severe haemolysis in G6PD-deficient individuals, potentially creating significant morbidity and undermining confidence in 8-aminoquinoline prescription. On the other hand, erring on the side of safety and excluding large numbers of people with unconfirmed G6PD deficiency from treatment with 8-aminoquinolines will diminish the impact of these drugs. Estimating the remaining G6PD enzyme activity is the most direct, accessible, and reliable assessment of the phenotype and remains the gold standard for the diagnosis of patients who could be harmed by the administration of primaquine. Genotyping seems an unambiguous technique, but its use is limited by cost and the large range of recognized G6PD genotypes. A number of enzyme activity assays diagnose G6PD deficiency, but they require a cold chain, specialized equipment, and laboratory skills. These assays are impractical for care delivery where most patients with malaria live. Improvements to the diagnosis of G6PD deficiency are required for the broader and safer use of 8-aminoquinolines to kill hypnozoites, while lower doses of primaquine may be safely used to kill gametocytes without testing. The discussions and conclusions of a workshop conducted in Incheon, Korea in May 2012 to review key knowledge gaps in G6PD deficiency are reported here.

Journal ArticleDOI
TL;DR: Hospital-based surveillance data is used to estimate the risk of severe anemia and mortality associated with endemic Plasmodium species in southern Papua, Indonesia.
Abstract: Background The burden of anemia attributable to non-falciparum malarias in regions with Plasmodium co-endemicity is poorly documented. We compared the hematological profile of patients with and without malaria in southern Papua, Indonesia. Methods and Findings Clinical and laboratory data were linked for all patients presenting to a referral hospital between April 2004 and December 2012. Data were available on patient demographics, malaria diagnosis, hemoglobin concentration, and clinical outcome, but other potential causes of anemia could not be identified reliably. Of 922,120 patient episodes (837,989 as outpatients and 84,131 as inpatients), a total of 219,845 (23.8%) were associated with a hemoglobin measurement, of whom 67,696 (30.8%) had malaria. Patients with P. malariae infection had the lowest hemoglobin concentration (n = 1,608, mean = 8.93 [95% CI 8.81–9.06]), followed by those with mixed species infections (n = 8,645, mean = 9.22 [95% CI 9.16–9.28]), P. falciparum (n = 37,554, mean = 9.47 [95% CI 9.44–9.50]), and P. vivax (n = 19,858, mean = 9.53 [95% CI 9.49–9.57]); p-value for all comparisons <0.001. Severe anemia (hemoglobin <5 g/dl) was present in 8,151 (3.7%) patients. Compared to patients without malaria, those with mixed Plasmodium infection were at greatest risk of severe anemia (adjusted odds ratio [AOR] 3.25 [95% CI 2.99–3.54]); AORs for severe anaemia associated with P. falciparum, P. vivax, and P. malariae were 2.11 (95% CI 2.00–2.23), 1.87 (95% CI 1.74–2.01), and 2.18 (95% CI 1.76–2.67), respectively, p<0.001. Overall, 12.2% (95% CI 11.2%–13.3%) of severe anemia was attributable to non-falciparum infections compared with 15.1% (95% CI 13.9%–16.3%) for P. falciparum monoinfections. Patients with severe anemia had an increased risk of death (AOR = 5.80 [95% CI 5.17–6.50]; p<0.001). Not all patients had a hemoglobin measurement, thus limitations of the study include the potential for selection bias, and possible residual confounding in multivariable analyses. Conclusions In Papua P. vivax is the dominant cause of severe anemia in early infancy, mixed P. vivax/P. falciparum infections are associated with a greater hematological impairment than either species alone, and in adulthood P. malariae, although rare, is associated with the lowest hemoglobin concentration. These findings highlight the public health importance of integrated genus-wide malaria control strategies in areas of Plasmodium co-endemicity. Please see later in the article for the Editors' Summary

Journal ArticleDOI
TL;DR: The discovery of a duplication of the P. vivax Duffy binding protein (PvDBP) gene suggests that PvDBP, a merozoite surface protein involved in red cell adhesion is rapidly evolving, possibly in response to constraints imposed by erythrocyte Duffy negativity in some human populations.
Abstract: Plasmodium vivax is the most prevalent human malaria parasite, causing serious public health problems in malaria-endemic countries. Until recently the Duffy-negative blood group phenotype was considered to confer resistance to vivax malaria for most African ethnicities. We and others have reported that P. vivax strains in African countries from Madagascar to Mauritania display capacity to cause clinical vivax malaria in Duffy-negative people. New insights must now explain Duffy-independent P. vivax invasion of human erythrocytes. Through recent whole genome sequencing we obtained ≥ 70× coverage of the P. vivax genome from five field-isolates, resulting in ≥ 93% of the Sal I reference sequenced at coverage greater than 20×. Combined with sequences from one additional Malagasy field isolate and from five monkey-adapted strains, we describe here identification of DNA sequence rearrangements in the P. vivax genome, including discovery of a duplication of the P. vivax Duffy binding protein (PvDBP) gene. A survey of Malagasy patients infected with P. vivax showed that the PvDBP duplication was present in numerous locations in Madagascar and found in over 50% of infected patients evaluated. Extended geographic surveys showed that the PvDBP duplication was detected frequently in vivax patients living in East Africa and in some residents of non-African P. vivax-endemic countries. Additionally, the PvDBP duplication was observed in travelers seeking treatment of vivax malaria upon returning home. PvDBP duplication prevalence was highest in west-central Madagascar sites where the highest frequencies of P. vivax-infected, Duffy-negative people were reported. The highly conserved nature of the sequence involved in the PvDBP duplication suggests that it has occurred in a recent evolutionary time frame. These data suggest that PvDBP, a merozoite surface protein involved in red cell adhesion is rapidly evolving, possibly in response to constraints imposed by erythrocyte Duffy negativity in some human populations.

Journal ArticleDOI
TL;DR: The periodicity of vivax malaria relapses may be explained by the activation of latent hypnozoites acquired from a previous malarial infection as discussed by the authors, the activation stimulus could be the febrile illness associated with acute malaria or a different infection.
Abstract: The periodicity of vivax malaria relapses may be explained by the activation of latent hypnozoites acquired from a previous malarial infection. The activation stimulus could be the febrile illness associated with acute malaria or a different febrile infection. We review historical records to examine the association between relapses of Plasmodium vivax and febrile infectious diseases. In data from British soldiers in Palestine, epidemic falciparum malaria triggered a smaller epidemic of P vivax relapses only in those who had been extensively exposed to malaria previously. Relapses did not follow pandemic influenza infection. Evidence from three simultaneous typhoid and malaria epidemics suggest that typhoid fever might activate P vivax hypnozoites. Some data lend support to the notion that vivax malaria relapse followed febrile illness caused by relapsing fever, trench fever, epidemic typhus, and Malta fever (brucellosis). These observations suggest that systemic parasitic and bacterial infections, but not viral infections, can activate P vivax hypnozoites. Specific components of the host's acute febrile inflammatory response, and not fever alone, are probably important factors in the provocation of a relapse of vivax malaria.

Journal ArticleDOI
TL;DR: De novo assembly of a P. vivax field isolate genome is reported, which takes full advantage of next-generation sequencing data to provide a comprehensive characterization of genetic variations in this important malaria parasite.
Abstract: Recent sequencing of Plasmodium vivax field isolates and monkey-adapted strains enabled characterization of SNPs throughout the genome. These analyses relied on mapping short reads onto the P. vivax reference genome that was generated using DNA from the monkey-adapted strain Salvador I. Any genomic locus deleted in this strain would be lacking in the reference genome sequence and missed in previous analyses. Here, we report de novo assembly of a P. vivax field isolate genome. Out of 2,857 assembled contigs, we identify 362 contigs, each containing more than 5 kb of contiguous DNA sequences absent from the reference genome sequence. These novel P. vivax DNA sequences account for 3.8 million nucleotides and contain 792 predicted genes. Most of these contigs contain members of multigene families and likely originate from telomeric regions. Interestingly, we identify two contigs containing predicted protein coding genes similar to known Plasmodium red blood cell invasion proteins. One gene encodes the reticulocyte-binding protein gene orthologous to P. cynomolgi RBP2e and P. knowlesi NBPXb. The second gene harbors all the hallmarks of a Plasmodium erythrocyte-binding protein, including conserved Duffy-binding like and C-terminus cysteine-rich domains. Phylogenetic analysis shows that this novel gene clusters separately from all known Plasmodium Duffy-binding protein genes. Additional analyses showing that this gene is present in most P. vivax genomes and transcribed in blood-stage parasites suggest that P. vivax red blood cell invasion mechanisms may be more complex than currently understood. The strategy employed here complements previous genomic analyses and takes full advantage of next-generation sequencing data to provide a comprehensive characterization of genetic variations in this important malaria parasite. Further analyses of the novel protein coding genes discovered through de novo assembly have the potential to identify genes that influence key aspects of P. vivax biology, including alternative mechanisms of human erythrocyte invasion.

Book ChapterDOI
TL;DR: The evidence for P. vivax Duffy-dependent and Duffy-independent red cell invasion and the influence of further host gene polymorphism associated with malaria endemicity on susceptibility to v Vivax malaria are reviewed.
Abstract: Resistance to Plasmodium vivax blood-stage infection has been widely recognised to result from absence of the Duffy (Fy) blood group from the surface of red blood cells (RBCs) in individuals of African descent. Interestingly, recent studies from different malaria-endemic regions have begun to reveal new perspectives on the association between Duffy gene polymorphism and P. vivax malaria. In Papua New Guinea and the Americas, heterozygous carriers of a Duffy-negative allele are less susceptible to P. vivax infection than Duffy-positive homozygotes. In Brazil, studies show that the Fy(a) antigen, compared to Fy(b), is associated with lower binding to the P. vivax Duffy-binding protein and reduced susceptibility to vivax malaria. Additionally, it is interesting that numerous studies have now shown that P. vivax can infect RBCs and cause clinical disease in Duffy-negative people. This suggests that the relationship between P. vivax and the Duffy antigen is more complex than customarily described. Evidence of P. vivax Duffy-independent red cell invasion indicates that the parasite must be evolving alternative red cell invasion pathways. In this chapter, we review the evidence for P. vivax Duffy-dependent and Duffy-independent red cell invasion. We also consider the influence of further host gene polymorphism associated with malaria endemicity on susceptibility to vivax malaria. The interaction between the parasite and the RBC has significant potential to influence the effectiveness of P. vivax-specific vaccines and drug treatments. Ultimately, the relationships between red cell polymorphisms and P. vivax blood-stage infection will influence our estimates on the population at risk and efforts to eliminate vivax malaria.

Journal ArticleDOI
TL;DR: In settings where chloroquine remains effective, ACTs are as effective at preventing recurrent parasitaemias before day 28, and in high transmission settings, dihydroartemisinin-piperaquine is probably superior to artemether-lumefantrine, artes unate plus sulphadoxine-pyrimethamine and artesunate plus amodiaquine.
Abstract: Background Plasmodium vivax is an important cause of malaria in many parts of Asia and South America, and parasite resistance to the standard treatment (chloroquine) is now high in some parts of Oceania. This review aims to assess the current treatment options in the light of increasing chloroquine resistance. Objectives To compare artemisinin-based combination therapies (ACTs) with alternative antimalarial regimens for treating acute uncomplicated P. vivax malaria. Search methods We searched the Cochrane Infectious Disease Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL); MEDLINE; EMBASE; LILACS; and the metaRegister of Controlled Trials (mRCT) up to 28 March 2013 using “vivax” and “arte* OR dihydroarte*” as search terms. Selection criteria Randomized controlled trials comparing ACTs versus standard therapy, or comparing alternative ACTs, in adults and children with uncomplicated P. vivax malaria. Data collection and analysis Two authors independently assessed trials for eligibility and risk of bias, and extracted data. We used recurrent parasitaemia prior to day 28 as a proxy for effective treatment of the blood stage parasite, and compared drug treatments using risk ratios (RR) and 95% confidence intervals (CIs). We used trials following patients for longer than 28 days to assess the duration of the post-treatment prophylactic effect of ACTs. We assessed the quality of the evidence using the GRADE approach. Main results We included 14 trials, that enrolled 2592 participants, and were all conducted in Asia and Oceania between 2002 and 2011. ACTs versus chloroquine ACTs clear parasites from the peripheral blood quicker than chloroquine monotherapy (parasitaemia after 24 hours of treatment: RR 0.42, 95% CI 0.36 to 0.50, four trials, 1652 participants, high quality evidence). In settings where chloroquine remains effective, ACTs are as effective as chloroquine at preventing recurrent parasitaemias before day 28 (RR 0.58, 95% CI 0.18 to 1.90, five trials, 1622 participants, high quality evidence). In four of these trials, recurrent parasitaemias before day 28 were very low following treatment with both chloroquine and ACTs. The fifth trial, from Thailand in 2011, found increased recurrent parasitaemias following treatment with chloroquine (9%), while they remained low following ACT (2%) (RR 0.25, 95% CI 0.09 to 0.66, one trial, 437 participants). ACT combinations with long half-lives probably also provide a longer prophylactic effect after treatment, with significantly fewer recurrent parasitaemias between day 28 and day 42 or day 63 (RR 0.57, 95% CI 0.40 to 0.82, three trials, 1066 participants, moderate quality evidence). One trial, from Cambodia, Thailand, India and Indonesia, gave additional primaquine to both treatment groups to reduce the risk of spontaneous relapses. Recurrent parasitaemias after day 28 were lower than seen in the trials that did not give primaquine, but the ACT still appeared to have an advantage (RR 0.27, 95% CI 0.08 to 0.94, one trial, 376 participants, low quality evidence). ACTs versus alternative ACTs In high transmission settings, dihydroartemisinin-piperaquine is probably superior to artemether-lumefantrine, artesunate plus sulphadoxine-pyrimethamine and artesunate plus amodiaquine at preventing recurrent parasitaemias before day 28 (RR 0.20, 95% CI 0.08 to 0.49, three trials, 334 participants, moderate quality evidence). Dihydroartemisinin-piperaquine may also have an improved post-treatment prophylactic effect lasting for up to six weeks, and this effect may be present even when primaquine is also given to achieve radical cure (RR 0.21, 95% CI 0.10 to 0.46, two trials, 179 participants, low quality evidence). The data available from low transmission settings is too limited to reliably assess the relative effectiveness of ACTs. Authors' conclusions ACTs appear at least equivalent to chloroquine at effectively treating the blood stage of P. vivax infection. Even in areas where chloroquine remains effective, this finding may allow for simplified protocols for treating all forms of malaria with ACTs. In areas where chloroquine no longer cures the infection, ACTs offer an effective alternative. Dihydroartemisinin-piperaquine is the most studied ACT. It may provide a longer period of post-treatment prophylaxis than artemether-lumefantrine or artesunate plus amodiaquine. This effect may be clinically important in high transmission settings whether primaquine is also given or not.

Journal ArticleDOI
TL;DR: It is proposed that, unlike in Asia where human migration increases local genetic diversity, the combined effects of the geographical structure and the low incidence of vivax malaria in the Americas has resulted in patterns of low local but high regional genetic diversity.
Abstract: Plasmodium vivax is the most prevalent human malaria parasite in the Americas. Previous studies have contrasted the genetic diversity of parasite populations in the Americas with those in Asia and Oceania, concluding that New World populations exhibit low genetic diversity consistent with a recent introduction. Here we used an expanded sample of complete mitochondrial genome sequences to investigate the diversity of P. vivax in the Americas as well as in other continental populations. We show that the diversity of P. vivax in the Americas is comparable to that in Asia and Oceania, and we identify several divergent clades circulating in South America that may have resulted from independent introductions. In particular, we show that several haplotypes sampled in Venezuela and northeastern Brazil belong to a clade that diverged from the other P. vivax lineages at least 30,000 years ago, albeit not necessarily in the Americas. We propose that, unlike in Asia where human migration increases local genetic diversity, the combined effects of the geographical structure and the low incidence of vivax malaria in the Americas has resulted in patterns of low local but high regional genetic diversity. This could explain previous views that P. vivax in the Americas has low genetic diversity because these were based on studies carried out in limited areas. Further elucidation of the complex geographical pattern of P. vivax variation will be important both for diversity assessments of genes encoding candidate vaccine antigens and in the formulation of control and surveillance measures aimed at malaria elimination.

Book ChapterDOI
TL;DR: Data support the premise that developing a multi-stage P. vivax vaccine may be feasible and is worth pursuing, and naturally acquired transmission-blocking (TB) immunity (TBI) was also found in several populations.
Abstract: Population studies show that individuals acquire immunity to Plasmodium vivax more quickly than Plasmodium falciparum irrespective of overall transmission intensity, resulting in the peak burden of P. vivax malaria in younger age groups. Similarly, actively induced P. vivax infections in malaria therapy patients resulted in faster and generally more strain-transcending acquisition of immunity than P. falciparum infections. The mechanisms behind the more rapid acquisition of immunity to P. vivax are poorly understood. Natural acquired immune responses to P. vivax target both pre-erythrocytic and blood-stage antigens and include humoral and cellular components. To date, only a few studies have investigated the association of these immune responses with protection, with most studies focussing on a few merozoite antigens (such as the Pv Duffy binding protein (PvDBP), the Pv reticulocyte binding proteins (PvRBPs), or the Pv merozoite surface proteins (PvMSP1, 3 & 9)) or the circumsporozoite protein (PvCSP). Naturally acquired transmission-blocking (TB) immunity (TBI) was also found in several populations. Although limited, these data support the premise that developing a multi-stage P. vivax vaccine may be feasible and is worth pursuing.

Journal ArticleDOI
TL;DR: In Jiangsu Province, China, large-scale MDA was implemented and associated with declines in high P. vivax malaria transmission; a more recent focal approach may have contributed to interruption of transmission.
Abstract: Recent progress in malaria control has caused renewed interest in mass drug administration (MDA) as a potential elimination strategy but the evidence base is limited. China has extensive experience with MDA, but it is not well documented. An ecological study was conducted to describe the use of MDA for the control and elimination of Plasmodium vivax in Jiangsu Province and explore the association between MDA and malaria incidence. Two periods were focused on: 1973 to 1983 when malaria burden was high and MDA administered to highly endemic counties province-wide, and 2000 to 2009, when malaria burden was low and a focal approach was used in two counties. All available data about the strategies implemented, MDA coverage, co-interventions, incidence, and adverse events were collected and described. Joinpoint analysis was used to describe trends in incidence and the relationship between MDA coverage and incidence was explored in negative binomial regression models. From 1973 to 1983, MDA with pyrimethamine and primaquine was used on a large scale, with up to 30 million people in target counties covered in a peak year (50% of the total population). Joinpoint analyses identified declines in annual incidence, -56.7% (95% CI -75.5 to -23.7%) from 1973–1976 and -12.4% (95% CI -24.7 to 2.0%) from 1976–1983. Population average negative binomial models identified a relationship between higher total population MDA coverage and lower monthly incidence from 1973–1976, IRR 0.98 (95% CI 0.97 to 1.00), while co-interventions, rainfall and GDP were not associated. From 2000–2009, incidence in two counties declined (annual change -43.7 to -14.0%) during a time when focal MDA using chloroquine and primaquine was targeted to villages and/or individuals residing near passively detected index cases (median 0.04% of total population). Although safety data were not collected systematically, there were rare reports of serious but non-fatal events. In Jiangsu Province, China, large-scale MDA was implemented and associated with declines in high P. vivax malaria transmission; a more recent focal approach may have contributed to interruption of transmission. MDA should be considered a potential key strategy for malaria control and elimination.

Journal ArticleDOI
TL;DR: The pLDH-based RDT was highly sensitive for the diagnosis of severe malaria from all species; however, neither the p LDH- nor aldolase- based RDT demonstrated sufficiently high overall sensitivity for P. knowlesi.
Abstract: Plasmodium knowlesi can cause severe and fatal human malaria in Southeast Asia. Rapid diagnosis of all Plasmodium species is essential for initiation of effective treatment. Rapid diagnostic tests (RDTs) are sensitive for detection of uncomplicated and severe falciparum malaria but have not been systematically evaluated in knowlesi malaria. At a tertiary referral hospital in Sabah, Malaysia, we prospectively evaluated the sensitivity of two combination RDTs for the diagnosis of uncomplicated and severe malaria from all three potentially fatal Plasmodium species, using a pan-Plasmodium lactate dehydrogenase (pLDH)-P. falciparum histidine-rich protein 2 (PfHRP2) RDT (First Response) and a pan-Plasmodium aldolase-PfHRP2 RDT (ParaHIT). Among 293 hospitalized adults with PCR-confirmed Plasmodium monoinfection, the sensitivity of the pLDH component of the pLDH-PfHRP2 RDT was 74% (95/129; 95% confidence interval [CI], 65 to 80%), 91% (110/121; 95% CI, 84 to 95%), and 95% (41/43; 95% CI, 85 to 99%) for PCR-confirmed P. knowlesi, P. falciparum, and P. vivax infections, respectively, and 88% (30/34; 95% CI, 73 to 95%), 90% (38/42; 95% CI, 78 to 96%), and 100% (12/12; 95% CI, 76 to 100%) among patients tested before antimalarial treatment was begun. Sensitivity in severe malaria was 95% (36/38; 95% CI, 83 to 99), 100% (13/13; 95% CI, 77 to 100), and 100% (7/7; 95% CI, 65 to 100%), respectively. The aldolase component of the aldolase-PfHRP2 RDT performed poorly in all Plasmodium species. The pLDH-based RDT was highly sensitive for the diagnosis of severe malaria from all species; however, neither the pLDH- nor aldolase-based RDT demonstrated sufficiently high overall sensitivity for P. knowlesi. More sensitive RDTs are needed in regions of P. knowlesi endemicity.

Journal ArticleDOI
TL;DR: This experimental system results in in vivo parasite growth, probably infectious to mosquitoes, and offers the opportunity to undertake studies previously impossible in P. vivax that will facilitate a better understanding of the pathology of v Vivax malaria and development of antimalarial drugs and vaccines.
Abstract: Background. Major impediments to development of vaccines and drugs for Plasmodium vivax malaria are the inability to culture this species and the extreme difficulty in undertaking clinical research by experimental infection. Methods. A parasite bank was collected from a 49-year-old woman with P. vivax infection, characterized, and used in an experimental infection study. Results. The donor made a full recovery from malaria after collection of a parasite bank, which tested negative for agents screened for in blood donations. DNA sequence analysis of the isolate indicated that it was clonal. Two subjects inoculated with the isolate became polymerase chain reaction positive on days 8 and 9, with onset of symptoms and positive blood smears on day 14, when they were treated with artemether-lumefantrine, with rapid clinical and parasitologic response. Transcripts of the parasite gene pvs25 that is expressed in gametocytes, the life cycle stage infectious to mosquitoes, were first detected on days 11 and 12. Conclusions. This experimental system results in in vivo parasite growth, probably infectious to mosquitoes. It offers the opportunity to undertake studies previously impossible in P. vivax that will facilitate a better understanding of the pathology of vivax malaria and development of antimalarial drugs and vaccines. Trial Registration. ANZCTR: 12612001096842.

Journal ArticleDOI
TL;DR: This infection should be considered in the differential diagnosis of any febrile travellers coming back from a recent travel to forested areas of Southeast Asia and Chloroquine is considered the treatment of choice of uncomplicated malaria caused by P. knowlesi.