scispace - formally typeset
Search or ask a question

Showing papers on "Quantum dot laser published in 2007"


Journal ArticleDOI
15 Nov 2007-Nature
TL;DR: This work demonstrates a cavity-free, broadband approach for engineering photon–emitter interactions via subwavelength confinement of optical fields near metallic nanostructures and shows that efficient coupling is accompanied by more than 2.5-fold enhancement of the quantum dot spontaneous emission, in good agreement with theoretical predictions.
Abstract: Control over the interaction between single photons and individual optical emitters is an outstanding problem in quantum science and engineering. It is of interest for ultimate control over light quanta, as well as for potential applications such as efficient photon collection, single-photon switching and transistors, and long-range optical coupling of quantum bits. Recently, substantial advances have been made towards these goals, based on modifying photon fields around an emitter using high-finesse optical cavities. Here we demonstrate a cavity-free, broadband approach for engineering photon-emitter interactions via subwavelength confinement of optical fields near metallic nanostructures. When a single CdSe quantum dot is optically excited in close proximity to a silver nanowire, emission from the quantum dot couples directly to guided surface plasmons in the nanowire, causing the wire's ends to light up. Non-classical photon correlations between the emission from the quantum dot and the ends of the nanowire demonstrate that the latter stems from the generation of single, quantized plasmons. Results from a large number of devices show that efficient coupling is accompanied by more than 2.5-fold enhancement of the quantum dot spontaneous emission, in good agreement with theoretical predictions.

1,412 citations


Journal ArticleDOI
Andrew J. Shields1
TL;DR: In this paper, a review of single-photon sources based on the emission of a single semiconductor quantum dot is presented, which suggests that it may be possible to realize compact, robust, LED-like semiconductor devices for quantum light generation.
Abstract: Lasers and LEDs have a statistical distribution in the number of photons emitted within a given time interval. Applications exploiting the quantum properties of light require sources for which either individual photons, or pairs, are generated in a regulated stream. Here we review recent research on single-photon sources based on the emission of a single semiconductor quantum dot. In just a few years remarkable progress has been made in generating indistinguishable single photons and entangled-photon pairs using such structures. This suggests that it may be possible to realize compact, robust, LED-like semiconductor devices for quantum light generation.

831 citations


Journal ArticleDOI
16 Sep 2007-Nature
TL;DR: Measurements provide both a method for probing the cavity–quantum dot system and a step towards the realization of quantum devices based on coherent light scattering and large optical nonlinearities from quantum dots in photonic crystal cavities.
Abstract: Solid-state cavity quantum electrodynamics (QED) systems offer a robust and scalable platform for quantum optics experiments and the development of quantum information processing devices. In particular, systems based on photonic crystal nanocavities and semiconductor quantum dots have seen rapid progress. Recent experiments have allowed the observation of weak and strong coupling regimes of interaction between the photonic crystal cavity and a single quantum dot in photoluminescence. In the weak coupling regime, the quantum dot radiative lifetime is modified; in the strong coupling regime, the coupled quantum dot also modifies the cavity spectrum. Several proposals for scalable quantum information networks and quantum computation rely on direct probing of the cavity–quantum dot coupling, by means of resonant light scattering from strongly or weakly coupled quantum dots. Such experiments have recently been performed in atomic systems and superconducting circuit QED systems, but not in solid-state quantum dot–cavity QED systems. Here we present experimental evidence that this interaction can be probed in solid-state systems, and show that, as expected from theory, the quantum dot strongly modifies the cavity transmission and reflection spectra. We show that when the quantum dot is coupled to the cavity, photons that are resonant with its transition are prohibited from entering the cavity. We observe this effect as the quantum dot is tuned through the cavity and the coupling strength between them changes. At high intensity of the probe beam, we observe rapid saturation of the transmission dip. These measurements provide both a method for probing the cavity–quantum dot system and a step towards the realization of quantum devices based on coherent light scattering and large optical nonlinearities from quantum dots in photonic crystal cavities.

634 citations


Journal ArticleDOI
TL;DR: In this article, the authors describe how semiconductor quantum-dot structures can provide an efficient means of amplifying and generating ultrafast (of the order of 100 fs), high-power and low-noise optical pulses, with the potential to boost the repetition rate of the pulses to beyond 1 THz.
Abstract: Semiconductor lasers are convenient and compact sources of light, offering highly efficient operation, direct electrical control and integration opportunities. In this review we describe how semiconductor quantum-dot structures can provide an efficient means of amplifying and generating ultrafast (of the order of 100 fs), high-power and low-noise optical pulses, with the potential to boost the repetition rate of the pulses to beyond 1 THz. Such device designs are opening up new possibilities in ultrafast science and technology.

507 citations


Journal ArticleDOI
TL;DR: In this article, the InAs/InP quantum dash (QD) materials for lasers and amplifiers, and QD device performance with particular interest in optical communication are summarized.
Abstract: This paper summarizes recent advances on InAs/InP quantum dash (QD) materials for lasers and amplifiers, and QD device performance with particular interest in optical communication. We investigate both InAs/InP dashes in a barrier and dashes in a well (DWELL) heterostructures operating at 1.5 mum. These two types of QDs can provide high gain and low losses. Continuous-wave (CW) room-temperature lasing operation on ground state of cavity length as short as 200 mum has been achieved, demonstrating the high modal gain of the active core. A threshold current density as low as 110 A/cm2 per QD layer has been obtained for infinite-length DWELL laser. An optimized DWELL structure allows achieving of a T0 larger than 100 K for broad-area (BA) lasers, and of 80 K for single-transverse-mode lasers in the temperature range between 25degC and 85degC. Buried ridge stripe (BRS)-type single-mode distributed feedback (DFB) lasers are also demonstrated for the first time, exhibiting a side-mode suppression ratio (SMSR) as high as 45 dB. Such DFB lasers allow the first floor-free 10-Gb/s direct modulation for back-to-back and transmission over 16-km standard optical fiber. In addition, novel results are given on gain, noise, and four-wave mixing of QD-based semiconductor optical amplifiers. Furthermore, we demonstrate that QD Fabry-Perot (FP) lasers, owing to the small confinement factor and the three-dimensional (3-D) quantification of electronic energy levels, exhibit a beating linewidth as narrow as 15 kHz. Such an extremely narrow linewidth, compared to their QW or bulk counterparts, leads to the excellent phase noise and time-jitter characteristics when QD lasers are actively mode-locked. These advances constitute a new step toward the application of QD lasers and amplifiers to the field of optical fiber communications

418 citations


Journal ArticleDOI
06 Dec 2007-Nature
TL;DR: Strong coupling, the regime of coherent quantum interactions, is demonstrated through observation of vacuum Rabi splitting in the transmitted and reflected signals from the cavity, and the fibre coupling method is used to examine the system’s steady-state nonlinear properties.
Abstract: Cavity quantum electrodynamics, the study of coherent quantum interactions between the electromagnetic field and matter inside a resonator, has received attention as both a test bed for ideas in quantum mechanics and a building block for applications in the field of quantum information processing. The canonical experimental system studied in the optical domain is a single alkali atom coupled to a high-finesse Fabry–Perot cavity. Progress made in this system has recently been complemented by research involving trapped ions, chip-based microtoroid cavities, integrated microcavity-atom-chips, nanocrystalline quantum dots coupled to microsphere cavities, and semiconductor quantum dots embedded in micropillars, photonic crystals and microdisks. The last system has been of particular interest owing to its relative simplicity and scalability. Here we use a fibre taper waveguide to perform direct optical spectroscopy of a system consisting of a quantum dot embedded in a microdisk. In contrast to earlier work with semiconductor systems, which has focused on photoluminescence measurements, we excite the system through the photonic (light) channel rather than the excitonic (matter) channel. Strong coupling, the regime of coherent quantum interactions, is demonstrated through observation of vacuum Rabi splitting in the transmitted and reflected signals from the cavity. The fibre coupling method also allows us to examine the system's steady-state nonlinear properties, where we see a saturation of the cavity–quantum dot response for less than one intracavity photon. The excitation of the cavity–quantum dot system through a fibre optic waveguide is central to applications such as high-efficiency single photon sources, and to more fundamental studies of the quantum character of the system.

401 citations


Journal ArticleDOI
17 Aug 2007-Science
TL;DR: It is shown that, like single-atom or single-molecule two- and three-level quantum systems, single semiconductor quantum dots can also exhibit interference phenomena when driven simultaneously by two optical fields.
Abstract: Quantum dots are typically formed from large groupings of atoms and thus may be expected to have appreciable many-body behavior under intense optical excitation. Nonetheless, they are known to exhibit discrete energy levels due to quantum confinement effects. We show that, like single-atom or single-molecule two- and three-level quantum systems, single semiconductor quantum dots can also exhibit interference phenomena when driven simultaneously by two optical fields. Probe absorption spectra are obtained that exhibit Autler-Townes splitting when the optical fields drive coupled transitions and complex Mollow-related structure, including gain without population inversion, when they drive the same transition. Our results open the way for the demonstration of numerous quantum level-based applications, such as quantum dot lasers, optical modulators, and quantum logic devices.

332 citations


Journal ArticleDOI
TL;DR: It is shown that resonance fluorescence, i.e., the resonant emission of a coherently driven two-level system, can be realized with a semiconductor quantum dot and second-order correlation measurements further confirm nonclassical light emission.
Abstract: We show that resonance fluorescence, i.e., the resonant emission of a coherently driven two-level system, can be realized with a semiconductor quantum dot. The dot is embedded in a planar optical microcavity and excited in a waveguide mode so as to discriminate its emission from residual laser scattering. The transition from the weak to the strong excitation regime is characterized by the emergence of oscillations in the first-order correlation function of the fluorescence, $g(\ensuremath{\tau})$, as measured by interferometry. The measurements correspond to a Mollow triplet with a Rabi splitting of up to $13.3\text{ }\text{ }\ensuremath{\mu}\mathrm{eV}$. Second-order correlation measurements further confirm nonclassical light emission.

330 citations


Journal ArticleDOI
TL;DR: In this article, two terahertz quantum cascade lasers based on GaAs∕Al0.1Ga0.9As heterostructures were reported, with pulsed mode operation up to 84K and continuous wave power of 0.36mW at 10K.
Abstract: Two terahertz quantum cascade lasers based on GaAs∕Al0.1Ga0.9As heterostructures are reported. Pulsed mode operation up to 84K and continuous wave (cw) power of 0.36mW at 10K are demonstrated for the laser which emits from 1.34to1.58THz. The other laser shows emission from 1.2to1.32THz with pulsed mode operation up to 69K and cw power of 0.12mW at 10K.

298 citations


Journal ArticleDOI
TL;DR: In this paper, a GaAs quantum point contact embedded in a radio frequency impedance matching circuit (RF-QPC) was used to measure the conductance sensitivity of a proximal few-electron double quantum dot.
Abstract: We report high-bandwidth charge sensing measurements using a GaAs quantum point contact embedded in a radio frequency impedance matching circuit (rf-QPC). With the rf-QPC biased near pinch-off where it is most sensitive to charge, we demonstrate a conductance sensitivity of 5×10−6e2∕hHz−1∕2 with a bandwidth of 8MHz. Single-shot readout of a proximal few-electron double quantum dot is investigated in a mode where the rf-QPC back action is rapidly switched.

284 citations


Journal ArticleDOI
TL;DR: In this article, the characteristics of intermediate band solar cells containing 10, 20, and 50 InAs quantum dot (QD) layers embedded in otherwise "standard" (Al,Ga)As solar cell structures have been compared.
Abstract: The characteristics of intermediate band solar cells containing 10, 20, and 50 InAs quantum dot (QD) layers embedded in otherwise “standard” (Al,Ga)As solar cell structures have been compared. The short-circuit current densities of the cells decreased and the quantum efficiencies of the devices showed a concomitant reduction in the minority carrier lifetime in the p emitters with increasing number of QD layers. Dislocations threading up from the QDs toward the surface of the cells, and revealed by bright field scanning transmission electron microscopy, are the most likely cause of the deterioration in the electrical performance of the cells.

Journal ArticleDOI
05 Nov 2007
TL;DR: In this article, a quantum-dot semiconductor optical amplifier with a gain of 25 dB, noise figure of 20 dBm, over the record widest bandwidth of 90 nm among all kinds of optical amplifiers, and also having a penalty-free output power of 23 dBm was realized by using quantum dots.
Abstract: This paper reviews the recent progress of quantum-dot semiconductor optical amplifiers developed as ultrawideband polarization-insensitive high-power amplifiers, high-speed signal regenerators, and wideband wavelength converters. A semiconductor optical amplifier having a gain of > 25 dB, noise figure of 20 dBm, over the record widest bandwidth of 90 nm among all kinds of optical amplifiers, and also having a penalty-free output power of 23 dBm, the record highest among all the semiconductor optical amplifiers, was realized by using quantum dots. By utilizing isotropically shaped quantum dots, the TM gain, which is absent in the standard Stranski-Krastanow QDs, has been drastically enhanced, and nearly polarization-insensitive SOAs have been realized for the first time. With an ultrafast gain response unique to quantum dots, an optical regenerator having receiver-sensitivity improving capability of 4 dB at a BER of 10-9 and operating speed of > 40 Gb/s has been successfully realized with an SOA chip. This performance achieved together with simplicity of structure suggests a potential for low-cost realization of regenerative transmission systems.

Journal ArticleDOI
TL;DR: In this paper, a single-mode quantum cascade laser source is presented, which is suitable for a variety of chemical sensing applications and can be used to perform absorption spectroscopy of fluids.
Abstract: We demonstrate a compact, single-mode quantum cascade laser source continuously tunable between 8.7 and 9.4μm. The source consists of an array of single-mode distributed feedback quantum cascade lasers with closely spaced emission wavelengths fabricated monolithically on a single chip and driven by a microelectronic controller. Our source is suitable for a variety of chemical sensing applications. Here, we use it to perform absorption spectroscopy of fluids.

Journal ArticleDOI
TL;DR: Measurements of first- and second-order coherence of quantum-dot micropillar lasers together with a semiconductor laser theory show a broad threshold region for the observed high-beta microcavities.
Abstract: We present measurements of first- and second-order coherence of quantum-dot micropillar lasers together with a semiconductor laser theory. Our results show a broad threshold region for the observed high-beta microcavities. The intensity jump is accompanied by both pronounced photon intensity fluctuations and strong coherence length changes. The investigations clearly visualize a smooth transition from spontaneous to predominantly stimulated emission which becomes harder to determine for high beta. In our theory, a microscopic approach is used to incorporate the semiconductor nature of quantum dots. The results are in agreement with the experimental intensity traces and the photon statistics measurements.

Journal ArticleDOI
TL;DR: In this article, size dependent hole dynamics were measured in colloidal CdSe quantum dots for a specific state-to-state excitonic transition and it was shown that the hole energy loss rate increases for smaller quantum dots, contradicting known relaxation mechanisms for holes.
Abstract: Size dependent hole dynamics are measured in colloidal CdSe quantum dots for a specific state-to-state excitonic transition. These experiments show that the hole energy loss rate increases for smaller quantum dots, contradicting known relaxation mechanisms for holes. These experiments reveal a new mechanism for hole relaxation in colloidal quantum dots which circumvents the expected phonon bottleneck for holes. The data are consistent with a nonadiabatic surface channel as the dominant pathway for hole relaxation in colloidal semiconductor quantum dots.

Journal ArticleDOI
TL;DR: In this article, a design of terahertz quantum-cascade lasers based on three-well active modules is presented. But the design is not suitable for the use of a large number of resonant phonons.
Abstract: The authors report on a design of terahertz quantum-cascade lasers based on three-well active modules. Each module consists of two tunnel-coupled wells for the two lasing states and another well for both resonant-phonon depopulation and carrier injection. This design is the simplest so far among the various published working devices. The test device has a lasing frequency of 3.4THz and maximum operating temperature of 142K.

Journal ArticleDOI
TL;DR: Theoretical considerations show that the appearance of single- and double-pulse excitability at one boundary of the locking region are related to a saddle-node bifurcation on a limit cycle as in the Adler equation.
Abstract: We experimentally analyze the dynamics of a quantum dot semiconductor laser operating under optical injection. We observe the appearance of single- and double-pulse excitability at one boundary of the locking region. Theoretical considerations show that these pulses are related to a saddle-node bifurcation on a limit cycle as in the Adler equation. The double pulses are related to a period-doubling bifurcation and occur on the same homoclinic curve as the single pulses.

Journal ArticleDOI
TL;DR: In this article, the authors show that the time-integrated fluorescence exhibits a substantial redshift compared to the emission from dots in solution, and energy transfer can be observed directly in spectrally resolved fluorescence transients.
Abstract: Resonant nonradiative energy transfer between close-packed PbS quantum dots is observed in continuous-wave and time-resolved fluorescence experiments. Samples of nominally a single dot size, and two dot sizes, were investigated. In both cases, the time-integrated fluorescence exhibits a substantial redshift compared to the emission from dots in solution, and energy transfer can be observed directly in spectrally resolved fluorescence transients.

Journal ArticleDOI
TL;DR: In this article, optical, electrical, and spectral response characteristics of three-stack InAs∕GaAs quantum dot solar cells with and without GaP strain compensation (SC) layers are presented and compared with a GaAs control cell.
Abstract: We report optical, electrical, and spectral response characteristics of three-stack InAs∕GaAs quantum dot solar cells with and without GaP strain compensation (SC) layers. The short circuit current density, open circuit voltage, and external quantum efficiency of these cells under air mass 1.5G at 290mW∕cm2 illumination are presented and compared with a GaAs control cell. The cells with SC layers show superior device quality, confirmed by I-V and spectral response measurements. The quantum dot solar cells show an extended photoresponse compared to the GaAs control cell. The effect of the SC layer thickness on device performance is also presented.

Journal ArticleDOI
11 Oct 2007-Nature
TL;DR: An electro-optic detection scheme is used to measure the amplitude and phase of stimulated radiation, and correlate this radiation directly with an input probing pulse, and obtains an insight into the evolution of the laser field.
Abstract: Laser radiation is usually measured with detectors that determine frequency and intensity, but gather no information about the phase of the radiation. By measuring the phase it would become possible to gain insights in the dynamic processes of optical amplification and attenuation underlying laser operation. Kroll et al. have now developed a way of measuring amplitude as well as phase of laser radiation from so-called quantum cascade lasers, which operate in the terahertz regime. The technique, which could be extended to other types of lasers, can be used to study effects leading to optical losses — useful information to improve the laser performance. Laser radiation is usually measured with intensity detectors that determine frequency and intensity, but throw away information about the phase of the radiation. But a scheme has been developed to measure amplitude as well as phase of laser radiation from so-called quantum cascade lasers, which operate in the terahertz regime. Lasers are usually described by their output frequency and intensity. However, laser operation is an inherently nonlinear process. Knowledge about the dynamic behaviour of lasers is thus of great importance for detailed understanding of laser operation and for improvement in performance for applications. Of particular interest is the time domain within the coherence time of the optical transition. This time is determined by the oscillation period of the laser radiation and thus is very short. Rigorous quantum mechanical models1,2 predict interesting effects like quantum beats, lasing without inversion, and photon echo processes. As these models are based on quantum coherence and interference, knowledge of the phase within the optical cycle is of particular interest. Laser radiation has so far been measured using intensity detectors, which are sensitive to the square of the electric field. Therefore information about the sign and phase of the laser radiation is lost. Here we use an electro-optic detection scheme to measure the amplitude and phase of stimulated radiation, and correlate this radiation directly with an input probing pulse. We have applied this technique to semiconductor quantum cascade lasers, which are coherent sources operating at frequencies between the optical (>100 THz) and electronic (<0.5 THz) ranges3. In addition to the phase information, we can also determine the spectral gain, the bias dependence of this gain, and obtain an insight into the evolution of the laser field.

Journal ArticleDOI
TL;DR: A novel hybrid organic/inorganic nanocomposite in which alternating monolayers of J-aggregates of cyanine dye and crystalline semiconductor quantum dots are grown by a layer-by-layer self-assembly technique that can reach efficiencies of up to 98% at room temperature is described.
Abstract: Highly efficient resonant coupling of optical excitations in hybrid organic/inorganic semiconductor nanostructures

Journal ArticleDOI
TL;DR: In this paper, position-dependent quantum dot doping is used to break the equivalence between the upper and lower layers of a bilayers of graphene and lift the degeneracy of the positive and negative momentum states of the dot.
Abstract: We demonstrate theoretically that quantum dots in bilayers of graphene can be realized. A position-dependent doping breaks the equivalence between the upper and lower layer and lifts the degeneracy of the positive and negative momentum states of the dot. Numerical results show the simultaneous presence of electron and hole confined states for certain doping profiles and a remarkable angular momentum dependence of the quantum dot spectrum, which is in sharp contrast with that for conventional semiconductor quantum dots. We predict that the optical spectrum will consist of a series of nonequidistant peaks.

Journal ArticleDOI
TL;DR: An up to now unmatched structural perfection of the quantum dot crystal and a narrow quantum dot size distribution are revealed, indicating a low defect density in the three-dimensional SiGe quantum dot crystals.
Abstract: Modern nanotechnology offers routes to create new artificial materials, widening the functionality of devices in physics, chemistry, and biology. Templated self-organization has been recognized as a possible route to achieve exact positioning of quantum dots to create quantum dot arrays, molecules, and crystals. Here we employ extreme ultraviolet interference lithography (EUV-IL) at a wavelength of I ) 13.5 nm for fast, large-area exposure of templates with perfect periodicity. Si(001) substrates have been patterned with two-dimensional hole arrays using EUV-IL and reactive ion etching. On these substrates, three-dimensionally ordered SiGe quantum dot crystals with the so far smallest quantum dot sizes and periods both in lateral and vertical directions have been grown by molecular beam epitaxy. X-ray diffractometry from a sample volume corresponding to about 3.6 × 107 dots and atomic force microscopy (AFM) reveal an up to now unmatched structural perfection of the quantum dot crystal and a narrow quantum dot size distribution. Intense interband photoluminescence has been observed up to room temperature, indicating a low defect density in the three-dimensional (3D) SiGe quantum dot crystals. Using the Ge concentration and dot shapes determined by X-ray and AFM measurements as input parameters for 3D band structure calculations, an excellent quantitative agreement between measured and calculated PL energies is obtained. The calculations show that the band structure of the 3D ordered quantum dot crystal is significantly modified by the artificial periodicity. A calculation of the variation of the eigenenergies based on the statistical variation in the dot dimensions as determined experimentally ( ±10% in linear dimensions) shows that the calculated electronic coupling between neighboring dots is not destroyed due to the quantum dot size variations. Thus, not only from a structural point of view but also with respect to the band structure, the 3D ordered quantum dots can be regarded as artificial crystal.

Journal ArticleDOI
TL;DR: In this paper, the performance of luminescent solar concentrators (LSCs) fabricated with polymers and quantum dots was compared to the behavior of laser dye LSCs.
Abstract: We compare the performance of luminescent solar concentrators (LSCs) fabricated with polymers and quantum dots to the behavior of laser dye LSCs. Previous research, centered around the use of small molecule laser dyes, was hindered by the lack of materials with small absorption/emission band overlap and longer lifetime. Materials such as semiconducting polymers and quantum dots present qualities that are desirable in LSCs, for example, smaller absorption/emission band overlap, tunable absorption, and longer lifetimes. In this study, the efficiency of LSCs consisting of liquid solutions of semiconducting polymers encased in glass was measured and compared to the efficiency of LSCs based on small molecule dyes and on quantum dots. Factors affecting the optical efficiency of the system such as the luminescing properties of the organic materials were examined. The experimental results were compared to Monte Carlo simulations. Our results suggest that commercially available quantum dots cannot serve as viable ...

Journal ArticleDOI
05 Nov 2007
TL;DR: It is evident that self-organized quantum-dot optoelectronic devices demonstrate properties that are sometimes unique and often surpass the characteristics of existing devices.
Abstract: Self-organized In(Ga)As/Ga(Al)As quantum dots have emerged as useful nanostructures that can be epitaxially grown and incorporated in the active region of devices The near pyramidal dots exhibit properties arising from the three-dimensional quantum confinement and from the coherent built-in strain The properties and current state-of-the-art characteristics of quantum-dot junction lasers, intersublevel infrared detectors, optical amplifiers, and microcavity devices are briefly reviewed It is evident that self-organized quantum-dot optoelectronic devices demonstrate properties that are sometimes unique and often surpass the characteristics of existing devices

Journal ArticleDOI
05 Nov 2007
TL;DR: In this paper, the growth of self-assembled, guided Ge quantum dots, and Ge quantum-dot superlattices on Si substrates are discussed. And the results indicate that Ge dot materials are potentially applicable for mid-infrared (8-12 mum) detectors as well as fiber-optic (1.3-1.55 mum) communications.
Abstract: In recent years, quantum dots have been successfully grown by self-assembling processes. For optoelectronic device applications, the quantum-dot structures have advantages such as reduced phonon scattering, longer carrier lifetime, and lower detector noise due to low-dimensional confinement effect. Comparing to traditional optoelectronic III-V and other materials, self-assembled Ge quantum dots grown on Si substrates have a potential to be monolithically integrated with advanced Si-based technology. In this paper, we describe the growth of self-assembled, guided Ge quantum dots, and Ge quantum-dot superlattices on Si. For dot growth, issues such as growth conditions and their effects on the dot morphology are reviewed. Then vertical correlation and dot morphology evolution are addressed in relation to the critical thickness of Ge quantum-dot superlattices. In addition, we also discuss the quantum-dot p-i-p photodetectors (QDIPs) and n-i-n photodetectors for mid-infrared applications, and the quantum-dot p-i-n photodetectors for 1.3-1.55 mum for communications applications. The wavelength of SiGe p-i-p QDIP can be tuned by the size as grown by various patterning methods. Photoresponse is demonstrated for an n-i-n structure in both the mid-infrared and far-infrared wavelength ranges. The p-i-n diodes exhibit low dark current and high quantum efficiency. The characteristics of fabricated light-emitting diode (LED) devices are also discussed, and room-temperature electroluminescence is observed for Ge quantum-dot LED. The results indicate that Ge dot materials are potentially applicable for mid-infrared (8-12 mum) detectors as well as fiber-optic (1.3-1.55 mum) communications.

Journal ArticleDOI
TL;DR: In this paper, a technique based on temperature tuning is proposed to align different quantum dots located on the same chip, which allows for up to 1.8nm reversible on-chip quantum dot tuning.
Abstract: Quantum networks based on InAs quantum dots embedded in photonic crystal devices rely on quantum dots being in resonance with each other and with the cavities they are embedded in. The authors developed a technique based on temperature tuning to spectrally align different quantum dots located on the same chip. The technique allows for up to 1.8 nm reversible on-chip quantum dot tuning.

01 Jan 2007
TL;DR: The growth of self-assembled, guided Ge quantum dots, and Ge quantum-dot superlattices on Si are described and results indicate that Ge dot materials are potentially applicable for mid-infrared detectors as well as fiber-optic communications.
Abstract: In recent years, quantum dots have been successfully grown by self-assembling processes. For opto- electronic device applications, the quantum-dot structures have advantages such as reduced phonon scattering, longer carrier lifetime, and lower detector noise due to low- dimensional confinement effect. Comparing to traditional optoelectronic III-V and other materials, self-assembled Ge quantum dots grown on Si substrates have a potential to be monolithically integrated with advanced Si-based technology. In this paper, we describe the growth of self-assembled, guided Ge quantum dots, and Ge quantum-dot superlattices on Si. For dot growth, issues such as growth conditions and their effects on the dot morphology are reviewed. Then vertical correlation and dot morphology evolution are addressed in relation to the critical thickness of Ge quantum-dot superlattices. In addition, we also discuss the quantum-dot p-i-p photodetectors (QDIPs) and n-i-n photodetectors for mid-infrared applications, and the quantum-dot p-i-n photodetectors for 1.3-1.55 � m for commu- nications applications. The wavelength of SiGe p-i-p QDIP can be tuned by the size as grown by various patterning methods. Photoresponse is demonstrated for an n-i-n structure in both the mid-infrared and far-infrared wavelength ranges. The p-i-n diodes exhibit low dark current and high quantum efficiency. The characteristics of fabricated light-emitting diode (LED) devices are also discussed, and room-temperature electro- luminescence is observed for Ge quantum-dot LED. The results indicate that Ge dot materials are potentially applica- ble for mid-infrared (8-12 � m) detectors as well as fiber-optic (1.3-1.55 � m) communications.


Journal ArticleDOI
TL;DR: Based on the atomistic valence-force field and the sp3d5s* nearest neighbor tight-binding models, NEMO 3-D enables the computation of strain and electronic structure in nanostructures consisting of more than 64 and 52 million atoms, corresponding to volumes of (110 nm)3 and (101 nm) 3, respectively as discussed by the authors.
Abstract: In part I, the development and deployment of a general nanoelectronic modeling tool (NEMO 3-D) has been discussed. Based on the atomistic valence-force field and the sp3d5s* nearest neighbor tight-binding models, NEMO 3-D enables the computation of strain and electronic structure in nanostructures consisting of more than 64 and 52 million atoms, corresponding to volumes of (110 nm)3 and (101 nm)3, respectively. In this part, successful applications of NEMO 3-D are demonstrated in the atomistic calculation of single-particle electronic states of the following realistically sized nanostructures: 1) self-assembled quantum dots (QDs) including long-range strain and piezoelectricity; 2) stacked quantum dot system as used in quantum cascade lasers; 3) SiGe quantum wells (QWs) for quantum computation; and 4) SiGe nanowires. These examples demonstrate the broad NEMO 3-D capabilities and indicate the necessity of multimillion atomistic electronic structure modeling.