scispace - formally typeset
Search or ask a question

Showing papers on "Receptor published in 2004"


Journal ArticleDOI
TL;DR: Known discrepancies in both innate and adaptive immunity are outlined, including balance of leukocyte subsets, defensins, Toll receptors, inducible NO synthase, the NK inhibitory receptor families Ly49 and KIR, FcR, Ig subsets andChemokine and chemokine receptor expression.
Abstract: Mice are the experimental tool of choice for the majority of immunologists and the study of their immune responses has yielded tremendous insight into the workings of the human immune system. However, as 65 million years of evolution might suggest, there are significant differences. Here we outline known discrepancies in both innate and adaptive immunity, including: balance of leukocyte subsets, defensins, Toll receptors, inducible NO synthase, the NK inhibitory receptor families Ly49 and KIR, FcR, Ig subsets, the B cell (BLNK, Btk, and lambda5) and T cell (ZAP70 and common gamma-chain) signaling pathway components, Thy-1, gammadelta T cells, cytokines and cytokine receptors, Th1/Th2 differentiation, costimulatory molecule expression and function, Ag-presenting function of endothelial cells, and chemokine and chemokine receptor expression. We also provide examples, such as multiple sclerosis and delayed-type hypersensitivity, where complex multicomponent processes differ. Such differences should be taken into account when using mice as preclinical models of human disease.

3,098 citations


Journal ArticleDOI
TL;DR: Exposure to microbes at an early developmental stage is required for the HPA system to become fully susceptible to inhibitory neural regulation, and results suggest that commensal microbiota can affect the postnatal development of the Hpa stress response in mice.
Abstract: Indigenous microbiota have several beneficial effects on host physiological functions; however, little is known about whether or not postnatal microbial colonization can affect the development of brain plasticity and a subsequent physiological system response. To test the idea that such microbes may affect the development of neural systems that govern the endocrine response to stress, we investigated hypothalamic–pituitary–adrenal (HPA) reaction to stress by comparing germfree (GF), specific pathogen free (SPF) and gnotobiotic mice. Plasma ACTH and corticosterone elevation in response to restraint stress was substantially higher in GF mice than in SPF mice, but not in response to stimulation with ether. Moreover, GF mice also exhibited reduced brain-derived neurotrophic factor expression levels in the cortex and hippocampus relative to SPF mice. The exaggerated HPA stress response by GF mice was reversed by reconstitution with Bifidobacterium infantis. In contrast, monoassociation with enteropathogenic Escherichia coli, but not with its mutant strain devoid of the translocated intimin receptor gene, enhanced the response to stress. Importantly, the enhanced HPA response of GF mice was partly corrected by reconstitution with SPF faeces at an early stage, but not by any reconstitution exerted at a later stage, which therefore indicates that exposure to microbes at an early developmental stage is required for the HPA system to become fully susceptible to inhibitory neural regulation. These results suggest that commensal microbiota can affect the postnatal development of the HPA stress response in mice.

2,023 citations


Journal ArticleDOI
TL;DR: This review summarizes the history of the purification of human IFNs and the key aspects of the current state of knowledge of humanIFN genes, proteins, and receptors and provides some new insights into the development of these proteins as major elements of innate immunity.
Abstract: Summary: Recombinant interferon-α (IFN-α) was approved by regulatory agencies in many countries in 1986. As the first biotherapeutic approved, IFN-α paved the way for the development of many other cytokines and growth factors. Nevertheless, understanding the functions of the multitude of human IFNs and IFN-like cytokines has just touched the surface. This review summarizes the history of the purification of human IFNs and the key aspects of our current state of knowledge of human IFN genes, proteins, and receptors. All the known IFNs and IFN-like cytokines are described [IFN-α, IFN-β, IFN-e, IFN-κ, IFN-ω, IFN-δ, IFN-τ, IFN-γ, limitin, interleukin-28A (IL-28A), IL-28B, and IL-29] as well as their receptors and signal transduction pathways. The biological activities and clinical applications of the proteins are discussed. An extensive section on the evolution of these molecules provides some new insights into the development of these proteins as major elements of innate immunity. The overall structure of the IFNs is put into perspective in relation to their receptors and functions.

1,613 citations


Journal ArticleDOI
TL;DR: Interactions ofHMGB1 with TLR 2 and TLR 4 may provide an explanation for the ability of HMGB1 to generate inflammatory responses that are similar to those initiated by LPS.

1,536 citations


Journal ArticleDOI
08 Jul 2004-Nature
TL;DR: The Toll-like receptors are the key proteins that allow mammals — whether immunologically naive or experienced — to detect microbes and many inflammatory processes, both sterile and infectious, may depend on TLR signalling.
Abstract: The Toll-like receptors (TLRs) are the key proteins that allow mammals--whether immunologically naive or experienced--to detect microbes. They lie at the core of our inherited resistance to disease, initiating most of the phenomena that occur in the course of infection. Quasi-infectious stimuli that have been used for decades to study inflammatory mechanisms can activate the TLR family of proteins. And it now seems that many inflammatory processes, both sterile and infectious, may depend on TLR signalling. We are in a good position to apply our understanding of TLR signalling to a range of challenges in immunology and medicine.

1,436 citations


Journal ArticleDOI
02 Sep 2004-Neuron
TL;DR: The results support the second model of Or83b function, which encodes an atypical odorant receptor that plays an essential general role in olfaction and disrupts behavioral and electrophysiological responses to many odorants.

1,221 citations


Journal ArticleDOI
TL;DR: In addition to PAMP‐mediated pathogen defense, disease resistance programs are often initiated upon plant‐cultivar‐specific recognition of microbial race‐specific virulence factors, a recognition specificity that is not known from animals.
Abstract: Innate immunity constitutes the first line of defense against attempted microbial invasion, and it is a well-described phenomenon in vertebrates and insects. Recent pioneering work has revealed striking similarities between the molecular organization of animal and plant systems for nonself recognition and anti-microbial defense. Like animals, plants have acquired the ability to recognize invariant pathogen-associated molecular patterns (PAMPs) that are characteristic of microbial organisms but which are not found in potential host plants. Such structures, also termed general elicitors of plant defense, are often indispensable for the microbial lifestyle and, upon receptor-mediated perception, inevitably betray the invader to the plant's surveillance system. Remarkable similarities have been uncovered in the molecular mode of PAMP perception in animals and plants, including the discovery of plant receptors resembling mammalian Toll-like receptors or cytoplasmic nucleotide-binding oligomerization domain leucine-rich repeat proteins. Moreover, molecular building blocks of PAMP-induced signaling cascades leading to the transcriptional activation of immune response genes are shared among the two kingdoms. In particular, nitric oxide as well as mitogen-activated protein kinase cascades have been implicated in triggering innate immune responses, part of which is the production of antimicrobial compounds. In addition to PAMP-mediated pathogen defense, disease resistance programs are often initiated upon plant-cultivar-specific recognition of microbial race-specific virulence factors, a recognition specificity that is not known from animals.

1,220 citations


Journal ArticleDOI
TL;DR: Although CRF appears to play a stimulatory role in stress responsivity through activation of CRFR1, specific actions of UcnII and UcnIII on CRFR2 may be important for dampening stress sensitivity.
Abstract: Since corticotropin-releasing factor (CRF) was first characterized, a growing family of ligands and receptors has evolved. The mammalian family members include CRF, urocortinI (UcnI), UcnII, and UcnIII, along with two receptors, CRFR1 and CRFR2, and a CRF binding protein. These family members differ in their tissue distribution and pharmacology. Studies have provided evidence supporting an important role of this family in regulation of the endocrine and behavioral responses to stress. Although CRF appears to play a stimulatory role in stress responsivity through activation of CRFR1, specific actions of UcnII and UcnIII on CRFR2 may be important for dampening stress sensitivity. As the only ligand with high affinity for both receptors, UcnI's role may be promiscuous. Regulation of the relative contribution of the two CRF receptors to brain CRF pathways may be essential in coordinating physiological responses to stress. The development of disorders related to heightened stress sensitivity and dysregulation of stress-coping mechanisms appears to involve regulatory mechanisms of CRF family members.

1,203 citations


Journal ArticleDOI
TL;DR: In this article, the involvement of PPARalpha in peroxisomal and mitochondrial fatty acid oxidation, microsomal fatty acid hydroxylation, lipoprotein, bile and amino acid metabolism, glucose homeostasis, biotransformation, inflammation control, hepato-carcinogenesis and other pathways, through a detailed analysis of the different known or putative PPARα target genes.
Abstract: Peroxisome proliferator-activated receptors (PPARs) are nuclear proteins that belong to the superfamily of nuclear hormone receptors. They mediate the effects of small lipophilic compounds such as long-chain fatty acids and their derivatives on transcription of genes commonly called PPAR target genes. Here we review the involvement of PPARalpha in peroxisomal and mitochondrial fatty acid oxidation, microsomal fatty acid hydroxylation, lipoprotein, bile and amino acid metabolism, glucose homeostasis, biotransformation, inflammation control, hepato-carcinogenesis and other pathways, through a detailed analysis of the different known or putative PPARalpha target genes.

1,197 citations


Journal ArticleDOI
TL;DR: Findings show berberine (BBR) as a new hypolipidemic drug with a mechanism of action different from that of statin drugs.
Abstract: We identify berberine (BBR), a compound isolated from a Chinese herb, as a new cholesterol-lowering drug. Oral administration of BBR in 32 hypercholesterolemic patients for 3 months reduced serum cholesterol by 29%, triglycerides by 35% and LDL-cholesterol by 25%. Treatment of hyperlipidemic hamsters with BBR reduced serum cholesterol by 40% and LDL-cholesterol by 42%, with a 3.5-fold increase in hepatic LDLR mRNA and a 2.6-fold increase in hepatic LDLR protein. Using human hepatoma cells, we show that BBR upregulates LDLR expression independent of sterol regulatory element binding proteins, but dependent on ERK activation. BBR elevates LDLR expression through a post-transcriptional mechanism that stabilizes the mRNA. Using a heterologous system with luciferase as a reporter, we further identify the 5' proximal section of the LDLR mRNA 3' untranslated region responsible for the regulatory effect of BBR. These findings show BBR as a new hypolipidemic drug with a mechanism of action different from that of statin drugs.

1,193 citations


Journal ArticleDOI
TL;DR: This review is intended to sum up the present understanding of the events following LPS binding to TLR4, and to create a model of the signalling pathways activated by LPS.
Abstract: An understanding of lipopolysaccharide (LPS) signal transduction is a key goal in the effort to provide a molecular basis for the lethal effect of LPS during septic shock and point the way to novel therapies. Rapid progress in this field during the last 6 years has resulted in the discovery of not only the receptor for LPS - Toll-like receptor 4 (TLR4) - but also in a better appreciation of the complexity of the signalling pathways activated by LPS. Soon after the discovery of TLR4, the formation of a receptor complex in response to LPS, consisting of dimerized TLR4 and MD-2, was described. Intracellular events following the formation of this receptor complex depend on different sets of adapters. An early response, which is dependent on MyD88 and MyD88-like adapter (Mal), leads to the activation of nuclear factor-kappaB (NF-kappaB). A later response to LPS makes use of TIR-domain-containing adapter-inducing interferon-beta (TRIF) and TRIF-related adapter molecule (TRAM), and leads to the late activation of NF-kappaB and IRF3, and to the induction of cytokines, chemokines, and other transcription factors. As LPS signal transduction is an area of intense research and rapid progress, this review is intended to sum up our present understanding of the events following LPS binding to TLR4, and we also attempt to create a model of the signalling pathways activated by LPS.

Journal ArticleDOI
TL;DR: This review provides a general overview of the mechanism of action of nuclear receptors and explores the various factors that are instrumental in modulating their pharmacology.
Abstract: Nuclear receptors are major targets for drug discovery and have key roles in development and homeostasis, as well as in many diseases such as obesity, diabetes and cancer. This review provides a general overview of the mechanism of action of nuclear receptors and explores the various factors that are instrumental in modulating their pharmacology. In most cases, the response of a given receptor to a particular ligand in a specific tissue will be dictated by the set of proteins with which the receptor is able to interact. One of the most promising aspects of nuclear receptor pharmacology is that it is now possible to develop ligands with a large spectrum of full, partial or inverse agonist or antagonist activities, but also compounds, called selective nuclear receptor modulators, that activate only a subset of the functions induced by the cognate ligand or that act in a cell-type-selective manner.

Journal ArticleDOI
TL;DR: Differences in AHR affinity between inbred mouse strains reflect variations in CYP1 inducibility and clearly have been shown to be associated with differences in risk of toxicity or cancer caused by PAHs and arylamines.

Journal ArticleDOI
TL;DR: Major future challenges will be to understand the role of proteases and PARs in physiological control mechanisms and human diseases and to develop selective agonists and antagonists that can be used to probe function and treat disease.
Abstract: Proteases acting at the surface of cells generate and destroy receptor agonists and activate and inactivate receptors, thereby making a vitally important contribution to signal transduction. Certain serine proteases that derive from the circulation (e.g., coagulation factors), inflammatory cells (e.g., mast cell and neutrophil proteases), and from multiple other sources (e.g., epithelial cells, neurons, bacteria, fungi) can cleave protease-activated receptors (PARs), a family of four G protein-coupled receptors. Cleavage within the extracellular amino terminus exposes a tethered ligand domain, which binds to and activates the receptors to initiate multiple signaling cascades. Despite this irreversible mechanism of activation, signaling by PARs is efficiently terminated by receptor desensitization (receptor phosphorylation and uncoupling from G proteins) and downregulation (receptor degradation by cell-surface and lysosomal proteases). Protease signaling in tissues depends on the generation and release of proteases, availability of cofactors, presence of protease inhibitors, and activation and inactivation of PARs. Many proteases that activate PARs are produced during tissue damage, and PARs make important contributions to tissue responses to injury, including hemostasis, repair, cell survival, inflammation, and pain. Drugs that mimic or interfere with these processes are attractive therapies: selective agonists of PARs may facilitate healing, repair, and protection, whereas protease inhibitors and PAR antagonists can impede exacerbated inflammation and pain. Major future challenges will be to understand the role of proteases and PARs in physiological control mechanisms and human diseases and to develop selective agonists and antagonists that can be used to probe function and treat disease.

Journal ArticleDOI
TL;DR: It is shown that TLR-mediated IFN-α induction requires the formation of a complex consisting of MyD88, TRAF6 and IRF7 as well as TRAF 6-dependent ubiquitination.
Abstract: Toll-like receptors (TLRs) are involved in the recognition of microbial pathogens. A subset of TLRs, TLR7, TLR8 and TLR9, induces antiviral responses by producing interferon-alpha (IFN-alpha). Production of IFN-alpha is dependent on the Toll-interleukin-1 receptor domain-containing adaptor MyD88. Here we show that MyD88 formed a complex with the transcription factor IRF7 but not with IRF3. The death domain of MyD88 interacted with an inhibitory domain of IRF7, and this interaction resulted in activation of the IFN-alpha-dependent promoters. Furthermore, the adaptor molecule TRAF6 also bound and activated IRF7. Ubiquitin ligase activity of TRAF6 was required for IRF7 activation. These results indicate that TLR-mediated IFN-alpha induction requires the formation of a complex consisting of MyD88, TRAF6 and IRF7 as well as TRAF6-dependent ubiquitination.

Journal ArticleDOI
TL;DR: The phenotypic effect of the Tlr9(CpG1) allele points to a critical role for TLR9 in viral sensing and identifies a vulnerable amino acid within the ectodomain of three TLR proteins, essential for a ligand response.
Abstract: Several subsets of dendritic cells have been shown to produce type I IFN in response to viral infections, thereby assisting the natural killer cell-dependent response that eliminates the pathogen. Type I IFN production can be induced both by unmethylated CpG-oligodeoxynucleotide and by double-stranded RNA. Here, we describe a codominant CpG-ODN unresponsive phenotype that results from an N-ethyl-N-nitrosourea-induced missense mutation in the Tlr9 gene (Tlr9CpG1). Mice homozygous for the Tlr9CpG1 allele are highly susceptible to mouse cytomegalovirus infection and show impaired infection-induced secretion of IFN-α/β and natural killer cell activation. We also demonstrate that both the Toll-like receptor (TLR) 9 → MyD88 and TLR3 → Trif signaling pathways are activated in vivo on viral inoculation, and that each pathway contributes to innate defense against systemic viral infection. Whereas both pathways lead to type I IFN production, neither pathway offers full protection against mouse cytomegalovirus infection in the absence of the other. The Tlr9CpG1 mutation alters a leucine-rich repeat motif and lies within a receptor domain that is conserved within the evolutionary cluster encompassing TLRs 7, 8, and 9. In other TLRs, including three mouse-specific TLRs described in this paper, the affected region is not represented. The phenotypic effect of the Tlr9CpG1 allele thus points to a critical role for TLR9 in viral sensing and identifies a vulnerable amino acid within the ectodomain of three TLR proteins, essential for a ligand response.

Journal ArticleDOI
TL;DR: It is concluded that VEGF-A recruitment of monocytes/macrophages plays a crucial role in inducing inflammatory neovascularization by supplying/amplifying signals essential for pathological hemangiogenesis and lymphang iogenesis.
Abstract: Lymphangiogenesis, an important initial step in tumor metastasis and transplant sensitization, is mediated by the action of VEGF-C and -D on VEGFR3. In contrast, VEGF-A binds VEGFR1 and VEGFR2 and is an essential hemangiogenic factor. We re-evaluated the potential role of VEGF-A in lymphangiogenesis using a novel model in which both lymphangiogenesis and hemangiogenesis are induced in the normally avascular cornea. Administration of VEGF Trap, a receptor-based fusion protein that binds and neutralizes VEGF-A but not VEGF-C or -D, completely inhibited both hemangiogenesis and the outgrowth of LYVE-1(+) lymphatic vessels following injury. Furthermore, both lymphangiogenesis and hemangiogenesis were significantly reduced in mice transgenic for VEGF-A(164/164) or VEGF-A(188/188) (each of which expresses only one of the three principle VEGF-A isoforms). Because VEGF-A is chemotactic for macrophages and we demonstrate here that macrophages in inflamed corneas release lymphangiogenic VEGF-C/VEGF-D, we evaluated the possibility that macrophage recruitment plays a role in VEGF-A-mediated lymphangiogenesis. Either systemic depletion of all bone marrow-derived cells (by irradiation) or local depletion of macrophages in the cornea (using clodronate liposomes) prior to injury significantly inhibited both hemangiogenesis and lymphangiogenesis. We conclude that VEGF-A recruitment of monocytes/macrophages plays a crucial role in inducing inflammatory neovascularization by supplying/amplifying signals essential for pathological hemangiogenesis and lymphangiogenesis.

Journal ArticleDOI
TL;DR: Card15 deficiency or the presence of a Crohn disease–like Card15 mutation increased Toll-like receptor 2–mediated activation of NF-κB–c-Rel, and TH1 responses were enhanced, suggesting that CARD15 mutations may lead to disease by causing excessive TH 1 responses.
Abstract: The mechanism by which mutations in CARD15, which encodes nucleotide-binding oligomerization domain 2 (NOD2), cause Crohn disease is poorly understood. Because signaling via mutated NOD2 proteins leads to defective activation of the transcription factor NF-κB, one proposal is that mutations cause deficient NF-κB-dependent T helper type 1 (TH1) responses and increased susceptibility to infection. However, this idea is inconsistent with the increased TH1 responses characteristic of Crohn disease. Here we used Card15−/− mice to show that intact NOD2 signaling inhibited Toll-like receptor 2–driven activation of NF-κB, particularly of the NF-κB subunit c-Rel. Moreover, NOD2 deficiency or the presence of a Crohn disease–like Card15 mutation increased Toll-like receptor 2–mediated activation of NF-κB–c-Rel, and TH1 responses were enhanced. Thus, CARD15 mutations may lead to disease by causing excessive TH1 responses.

Journal ArticleDOI
TL;DR: A comparison of the incidence of disease among people having different polymorphisms in genes that participate in TLR signaling shows that TLR function affects several diseases, including sepsis, immunodeficiencies, atherosclerosis and asthma.
Abstract: Members of the Toll-like receptor (TLR) family are key regulators of both innate and adaptive immune responses. The function of TLRs in various human diseases has been investigated by comparison of the incidence of disease among people having different polymorphisms in genes that participate in TLR signaling. These studies have shown that TLR function affects several diseases, including sepsis, immunodeficiencies, atherosclerosis and asthma. As this body of data grows, it will provide new insights into disease pathogenesis as well as valuable information on the merits of various therapeutic options.

Journal ArticleDOI
TL;DR: An important and specific role of GRKs and beta arrestins in regulating physiological responsiveness to psychostimulants and morphine suggests potential involvement of these molecules in certain brain disorders, such as addiction, Parkinson's disease, mood disorders, and schizophrenia.
Abstract: ▪ Abstract G protein–coupled receptors (GPCRs) have proven to be the most highly favorable class of drug targets in modern pharmacology Over 90% of nonsensory GPCRs are expressed in the brain, where they play important roles in numerous neuronal functions GPCRs can be desensitized following activation by agonists by becoming phosphorylated by members of the family of G protein–coupled receptor kinases (GRKs) Phosphorylated receptors are then bound by arrestins, which prevent further stimulation of G proteins and downstream signaling pathways Discussed in this review are recent progress in understanding basics of GPCR desensitization, novel functional roles, patterns of brain expression, and receptor specificity of GRKs and βarrestins in major brain functions In particular, screening of genetically modified mice lacking individual GRKs or βarrestins for alterations in behavioral and biochemical responses to cocaine and morphine has revealed a functional specificity in dopamine and μ-opioid receptor re

Journal ArticleDOI
TL;DR: Adenosine, a purine nucleoside that is elaborated at injured and inflamed sites, has a central role in the regulation of inflammatory responses and in limiting inflammatory tissue destruction.

Journal ArticleDOI
TL;DR: Current concepts on the molecular composition and function of GABA(B) receptors are reviewed and ongoing drug-discovery efforts are discussed, which are expected to broaden the spectrum of therapeutic applications.
Abstract: GABA(B) receptors are broadly expressed in the nervous system and have been implicated in a wide variety of neurological and psychiatric disorders. The cloning of the first GABA(B) receptor cDNAs in 1997 revived interest in these receptors and their potential as therapeutic targets. With the availability of molecular tools, rapid progress was made in our understanding of the GABA(B) system. This led to the surprising discovery that GABA(B) receptors need to assemble from distinct subunits to function and provided exciting new insights into the structure of G protein-coupled receptors (GPCRs) in general. As a consequence of this discovery, it is now widely accepted that GPCRs can exist as heterodimers. The cloning of GABA(B) receptors allowed some important questions in the field to be answered. It is now clear that molecular studies do not support the existence of pharmacologically distinct GABA(B) receptors, as predicted by work on native receptors. Advances were also made in clarifying the relationship between GABA(B) receptors and the receptors for gamma-hydroxybutyrate, an emerging drug of abuse. There are now the first indications linking GABA(B) receptor polymorphisms to epilepsy. Significantly, the cloning of GABA(B) receptors enabled identification of the first allosteric GABA(B) receptor compounds, which is expected to broaden the spectrum of therapeutic applications. Here we review current concepts on the molecular composition and function of GABA(B) receptors and discuss ongoing drug-discovery efforts.

Journal ArticleDOI
TL;DR: Studies of this intriguing immune-effector cell provide important insights into the complex mechanisms by which appropriate innate and acquired immune responses are initiated.
Abstract: Mast cells have mainly been studied in the setting of allergic disease, but the importance of mast cells for host defence against several pathogens has now been well established. The location of mast cells, which are found closely associated with blood vessels, allows them to have a crucial sentinel role in host defence. The mast cell has a unique 'armamentarium' of receptor systems and mediators for responding to pathogen-associated signals. Studies of this intriguing immune-effector cell provide important insights into the complex mechanisms by which appropriate innate and acquired immune responses are initiated.

Journal ArticleDOI
TL;DR: The pharmacology and signaling of the nine known prostaglandin GPCRs are discussed and the specific roles that these receptors play in inflammation and immune modulation are highlighted.

Journal ArticleDOI
TL;DR: A torrent of studies characterizing the contributions of different cytokines, receptors, adaptors and effector molecules to resistance against infection with Listeria monocytogenes yield one of the most comprehensive pictures of the 'battle' between host and microorganism.
Abstract: Listeria monocytogenes is a Gram-positive bacterium that is often used to study the mammalian immune response to infection because it is easy to culture, is relatively safe to work with and causes a highly predictable infection in laboratory mice. The broad application of this mouse model has resulted in a torrent of studies characterizing the contributions of different cytokines, receptors, adaptors and effector molecules to resistance against infection with Listeria monocytogenes. These studies, which are yielding one of the most comprehensive pictures of the 'battle' between host and microorganism, are reviewed here.

Journal ArticleDOI
TL;DR: There is growing evidence that the state of the circuit is determined by aversive and appetitive motivational states, and that this contributes to adaptive behavioural choice.
Abstract: Agonists for the μ-opioid receptor are powerful analgesics and are highly addictive; however, the contribution of the δ- and κ-opioid and opioid receptor-like receptors to motivational states is less clear. Agonists at each receptor modulate neurons in a circuit that selectively controls nociceptive transmission. This circuit can operate in both pain-inhibiting and pain-facilitating states, and the action of opioids contributes to and is determined by the state of the circuit. There is growing evidence that the state of the circuit is determined by aversive and appetitive motivational states, and that this contributes to adaptive behavioural choice.

Journal ArticleDOI
TL;DR: This work investigated the 'downstream' signaling events that regulate TLR3-dependent Trif-induced NF-κB activation and found that RIP1 mediates Trif -RIP1–inducedNF-κBs activation.
Abstract: Stimulation of Toll-like receptors (TLRs) initiates potent innate immune responses through Toll-interleukin 1 receptor (TIR) domain-containing adaptors such as MyD88 and Trif. Analysis of Trif-deficient mice has shown that TLR3-dependent activation of the transcription factor NF-kappa B by the TLR3 ligand double-stranded RNA is Trif dependent. Here we investigated the 'downstream' signaling events that regulate TLR3-dependent Trif-induced NF-kappa B activation. Trif recruited the kinases receptor interacting protein (RIP)-1 and RIP3 through its RIP homotypic interaction motif. In the absence of RIP1, TLR3-mediated signals activating NF-kappa B, but not the kinase JNK or interferon-beta, were abolished, suggesting that RIP1 mediates Trif-induced NF-kappa B activation. In contrast, the presence of RIP3 negatively regulated the Trif-RIP1-induced NF-kappa B pathway. Therefore, in contrast to other TLRs, which use interleukin 1 receptor-associated kinase (IRAK) proteins to activate NF-kappa B, TLR 3-induced NF-kappa B activation is dependent on RIP kinases.

Journal ArticleDOI
TL;DR: T-cadherin is identified as a receptor for the hexameric and high-molecular-weight species of adiponectin but not for the trimeric or globular species, implying that posttranslational modifications of adip onectin are critical for binding.
Abstract: Acrp30/adiponectin is reduced in the serum of obese and diabetic individuals, and the genetic locus of adiponectin is linked to the metabolic syndrome. Recombinant adiponectin, administered to diet-induced obese mice, induced weight loss and improved insulin sensitivity. In muscle and liver, adiponectin stimulates AMP-activated protein kinase activation and fatty acid oxidation. To expression-clone molecules capable of binding adiponectin, we transduced a C2C12 myoblast cDNA retroviral expression library into Ba/F3 cells and panned infected cells on recombinant adiponectin linked to magnetic beads. We identified T-cadherin as a receptor for the hexameric and high-molecular-weight species of adiponectin but not for the trimeric or globular species. Only eukaryotically expressed adiponectin bound to T-cadherin, implying that posttranslational modifications of adiponectin are critical for binding. An adiponectin mutant lacking a conserved N-terminal cysteine residue required for formation of hexamer and high-molecular-weight species did not bind T-cadherin in coimmunoprecipitation studies. Although lacking known cellular functions, T-cadherin is expressed in endothelial and smooth muscle cells, where it is positioned to interact with adiponectin. Because T-cadherin is a glycosylphosphatidylinositol-anchored extracellular protein, it may act as a coreceptor for an as-yet-unidentified signaling receptor through which adiponectin transmits metabolic signals.

Journal ArticleDOI
01 Feb 2004-Diabetes
TL;DR: The PPARs are major regulators of lipid and glucose metabolism, allowing adaptation to the prevailing nutritional environment, and their action on muscle insulin sensitivity may be secondary to the lowering of circulating lipids on PPAR-gamma activation.
Abstract: Peroxisome proliferator-activated receptors (PPARs) are transcription factors belonging to the superfamily of nuclear receptors. Three isoforms (α, δ, and γ) have been described. They act on DNA response elements as heterodimers with the nuclear retinoic acid receptor. Their natural activating ligands are fatty acids and lipid-derived substrates. PPAR-α is present in liver, heart, and, to a lesser extent, skeletal muscle. When activated, it promotes fatty acid oxidation, ketone body synthesis, and glucose sparing. Fibrates, which are used as hypolipidemic drugs, are ligands of PPAR-α. PPAR-δ is ubiquitous and could also favor fatty acid oxidation in tissues in which PPAR-α is absent or less expressed. PPAR-γ is expressed in adipose tissue, lower intestine, and cells involved in immunity. Activation of PPAR-γ induces the differentiation of preadipocytes into adipocytes and stimulates triglyceride storage. Thiazolidinediones are compounds used as hypoglycemic, muscle insulin-sensitizing agents in type 2 diabetes. Unexpectedly, they are activators of PPAR-γ. Their action on muscle insulin sensitivity may be secondary to the lowering of circulating lipids on PPAR-γ activation and to the secretion by adipocytes of insulin-sensitizing hormones such as adiponectin, all promoting glucose utilization. The PPARs are thus major regulators of lipid and glucose metabolism, allowing adaptation to the prevailing nutritional environment.

Journal ArticleDOI
TL;DR: Apoptosis pathways activated by death receptors of the tumour necrosis factor (TNF) family such as Fas, TNFR1, or the TRAIL receptors DR4 and DR5 are implicated in diverse diseases and many of the ideas about apoptosis regulation come from studying these pathways.