scispace - formally typeset
Search or ask a question
Institution

Charles University in Prague

EducationPrague, Czechia
About: Charles University in Prague is a education organization based out in Prague, Czechia. It is known for research contribution in the topics: Population & Large Hadron Collider. The organization has 32392 authors who have published 74435 publications receiving 1804208 citations.


Papers
More filters
Journal ArticleDOI
01 Jan 1987-Bone
TL;DR: The maximal rate of bone loss, as judged by radiogrammetry of the metacarpals and by dual-photon absorptiometry of the lumbar spine, coincided with the peak of the dissociation between urinary hydroxyproline excretion and/or plasma tartrate resistant acid phosphatase activity, indicating continuous imbalance of bone remodeling in the patients.

272 citations

Journal ArticleDOI
TL;DR: This multidisciplinary ESPNIC position statement guides professionals in the assessment and reassessment of the effectiveness of treatment interventions for pain, distress, inadequate sedation, withdrawal syndrome and delirium.
Abstract: Background This position statement provides clinical recommendations for the assessment of pain, level of sedation, iatrogenic withdrawal syndrome and delirium in critically ill infants and children. Admission to a neonatal or paediatric intensive care unit (NICU, PICU) exposes a child to a series of painful and stressful events. Accurate assessment of the presence of pain and non-pain-related distress (adequacy of sedation, iatrogenic withdrawal syndrome and delirium) is essential to good clinical management and to monitoring the effectiveness of interventions to relieve or prevent pain and distress in the individual patient.

271 citations

Journal ArticleDOI
TL;DR: In this article, a set of new routines for the XSPEC package for analyzing X-ray spectra of black-hole accretion disks are presented, which can be used also as a stand-alone and flexible code with the capability of handling time-resolved spectra in the regime of strong gravity.
Abstract: Accreting black holes are believed to emit X-rays, which then mediate information about strong gravity in the vicinity of the emission region. We report on a set of new routines for the XSPEC package for analyzing X-ray spectra of black-hole accretion disks. The new computational tool significantly extends the capabilities of the currently available fitting procedures that include the effects of strong gravity and allows one to systematically explore the constraints on more model parameters than previously possible (e.g., black-hole angular momentum). Moreover, axial symmetry of the disk intrinsic emissivity is not assumed, although it can be imposed to speed up the computations. The new routines can be used also as a stand-alone and flexible code with the capability of handling time-resolved spectra in the regime of strong gravity. We have used the new code to analyze the mean X-ray spectrum from the long XMM-Newton 2001 campaign of the Seyfert 1 galaxy MCG -6-30-15. Consistent with previous findings, we obtained a good fit to the broad Fe K line profile for a radial line intrinsic emissivity law in the disk that is not a simple power law, and for near maximal value of black hole angular momentum. However, equally good fits can be obtained also for small values of the black hole angular momentum. The code has been developed with the aim of allowing precise modeling of relativistic effects. Although we find that current data cannot constrain the parameters of black-hole/accretion disk system well, the code allows, for a given source or situation, detailed investigations of what features of the data future studies should be focused on in order to achieve the goal of uniquely isolating the parameters of such systems.

271 citations

Journal ArticleDOI
TL;DR: The experiments complemented by microscopic modeling reveal that the carrier relaxation is significantly slowed down as the photon energy is tuned to values below the optical-phonon frequency; however, owing to the presence of hot carriers, optical-Phonon emission is still the predominant relaxation process.
Abstract: We study the carrier dynamics in epitaxially grown graphene in the range of photon energies from 10 to 250 meV. The experiments complemented by microscopic modeling reveal that the carrier relaxation is significantly slowed down as the photon energy is tuned to values below the optical-phonon frequency; however, owing to the presence of hot carriers, optical-phonon emission is still the predominant relaxation process. For photon energies about twice the value of the Fermi energy, a transition from pump-induced transmission to pump-induced absorption occurs due to the interplay of interband and intraband processes.

271 citations

Journal ArticleDOI
TL;DR: Inhibition of targets such as cholesterol synthesis and metabolites, reactive oxygen species and hypoxia, macrophage activation and conversion, indoleamine 2,3-dioxygenase regulation of dendritic cells, vascular endothelial growth factor regulation of angiogenesis, fibrosis inhibition, endoglin, and Janus kinase signaling emerge as examples of important potential nexuses in the regulation of tumorigenesis and the tumor microenvironment that can be targeted.

270 citations


Authors

Showing all 32719 results

NameH-indexPapersCitations
Ronald C. Petersen1781091153067
P. Chang1702154151783
Vaclav Vrba141129895671
Milos Lokajicek139151198888
Christopher D. Manning138499147595
Yves Sirois137133495714
Rupert Leitner136120190597
Gerald M. Reaven13379980351
Roberto Sacchi132118689012
S. Errede132148198663
Mark Neubauer131125289004
Peter Kodys131126285267
Panos A Razis130128790704
Vit Vorobel13091979444
Jehad Mousa130122686564
Network Information
Related Institutions (5)
University of Milan
139.7K papers, 4.6M citations

90% related

Sapienza University of Rome
155.4K papers, 4.3M citations

90% related

University of Amsterdam
140.8K papers, 5.9M citations

89% related

University of Oxford
258.1K papers, 12.9M citations

89% related

Tel Aviv University
115.9K papers, 3.9M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023203
2022555
20214,841
20204,793
20194,421
20183,991