scispace - formally typeset
Search or ask a question
Institution

Charles University in Prague

EducationPrague, Czechia
About: Charles University in Prague is a education organization based out in Prague, Czechia. It is known for research contribution in the topics: Population & Large Hadron Collider. The organization has 32392 authors who have published 74435 publications receiving 1804208 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The 2014 RCC guideline has been updated by a multidisciplinary panel using the highest methodological standards, and provides the best and most reliable contemporary evidence base for RCC management.

3,100 citations

Journal ArticleDOI
12 Apr 2007-Nature
TL;DR: Previous two-dimensional electronic spectroscopy investigations of the FMO bacteriochlorophyll complex are extended, and direct evidence is obtained for remarkably long-lived electronic quantum coherence playing an important part in energy transfer processes within this system is obtained.
Abstract: Photosynthesis provides the primary energy source for almost all life on Earth. One of its remarkable features is the efficiency with which energy is transferred within the light harvesting complexes comprising the photosynthetic apparatus. Suspicions that quantum trickery might be involved in the energy transfer processes at the core of photosynthesis are now confirmed by a new spectroscopic study. The study reveals electronic quantum beats characteristic of wavelike energy motion within the bacteriochlorophyll complex from the green sulphur bacterium Chlorobium tepidum. This wavelike characteristic of the energy transfer process can explain the extreme efficiency of photosynthesis, in that vast areas of phase space can be sampled effectively to find the most efficient path for energy transfer. A spectroscopic study has directly monitored the quantum beating arising from remarkably long-lived electronic quantum coherence in a bacteriochlorophyll complex. This wavelike characteristic of the energy transfer process can explain the extreme efficiency of photosynthesis, in that vast areas of phase space can be sampled effectively to find the most efficient path for energy transfer. Photosynthetic complexes are exquisitely tuned to capture solar light efficiently, and then transmit the excitation energy to reaction centres, where long term energy storage is initiated. The energy transfer mechanism is often described by semiclassical models that invoke ‘hopping’ of excited-state populations along discrete energy levels1,2. Two-dimensional Fourier transform electronic spectroscopy3,4,5 has mapped6 these energy levels and their coupling in the Fenna–Matthews–Olson (FMO) bacteriochlorophyll complex, which is found in green sulphur bacteria and acts as an energy ‘wire’ connecting a large peripheral light-harvesting antenna, the chlorosome, to the reaction centre7,8,9. The spectroscopic data clearly document the dependence of the dominant energy transport pathways on the spatial properties of the excited-state wavefunctions of the whole bacteriochlorophyll complex6,10. But the intricate dynamics of quantum coherence, which has no classical analogue, was largely neglected in the analyses—even though electronic energy transfer involving oscillatory populations of donors and acceptors was first discussed more than 70 years ago11, and electronic quantum beats arising from quantum coherence in photosynthetic complexes have been predicted12,13 and indirectly observed14. Here we extend previous two-dimensional electronic spectroscopy investigations of the FMO bacteriochlorophyll complex, and obtain direct evidence for remarkably long-lived electronic quantum coherence playing an important part in energy transfer processes within this system. The quantum coherence manifests itself in characteristic, directly observable quantum beating signals among the excitons within the Chlorobium tepidum FMO complex at 77 K. This wavelike characteristic of the energy transfer within the photosynthetic complex can explain its extreme efficiency, in that it allows the complexes to sample vast areas of phase space to find the most efficient path.

2,981 citations

Journal ArticleDOI
TL;DR: In this paper, the authors evaluated plasma heat shock protein (Hsp) 90 in the skin of patients with systemic sclerosis (SSc) and characterized its association with SSc-related features.
Abstract: Our previous study demonstrated increased expression of Heat shock protein (Hsp) 90 in the skin of patients with systemic sclerosis (SSc). We aimed to evaluate plasma Hsp90 in SSc and characterize its association with SSc-related features. Ninety-two SSc patients and 92 age-/sex-matched healthy controls were recruited for the cross-sectional analysis. The longitudinal analysis comprised 30 patients with SSc associated interstitial lung disease (ILD) routinely treated with cyclophosphamide. Hsp90 was increased in SSc compared to healthy controls. Hsp90 correlated positively with C-reactive protein and negatively with pulmonary function tests: forced vital capacity and diffusing capacity for carbon monoxide (DLCO). In patients with diffuse cutaneous (dc) SSc, Hsp90 positively correlated with the modified Rodnan skin score. In SSc-ILD patients treated with cyclophosphamide, no differences in Hsp90 were found between baseline and after 1, 6, or 12 months of therapy. However, baseline Hsp90 predicts the 12-month change in DLCO. This study shows that Hsp90 plasma levels are increased in SSc patients compared to age-/sex-matched healthy controls. Elevated Hsp90 in SSc is associated with increased inflammatory activity, worse lung functions, and in dcSSc, with the extent of skin involvement. Baseline plasma Hsp90 predicts the 12-month change in DLCO in SSc-ILD patients treated with cyclophosphamide.

2,948 citations

Journal ArticleDOI
Bin Zhou1, Yuan Lu2, Kaveh Hajifathalian2, James Bentham1  +494 moreInstitutions (170)
TL;DR: In this article, the authors used a Bayesian hierarchical model to estimate trends in diabetes prevalence, defined as fasting plasma glucose of 7.0 mmol/L or higher, or history of diagnosis with diabetes, or use of insulin or oral hypoglycaemic drugs in 200 countries and territories in 21 regions, by sex and from 1980 to 2014.

2,782 citations

Journal ArticleDOI
Sabeeha S. Merchant1, Simon E. Prochnik2, Olivier Vallon3, Elizabeth H. Harris4, Steven J. Karpowicz1, George B. Witman5, Astrid Terry2, Asaf Salamov2, Lillian K. Fritz-Laylin6, Laurence Maréchal-Drouard7, Wallace F. Marshall8, Liang-Hu Qu9, David R. Nelson10, Anton A. Sanderfoot11, Martin H. Spalding12, Vladimir V. Kapitonov13, Qinghu Ren, Patrick J. Ferris14, Erika Lindquist2, Harris Shapiro2, Susan Lucas2, Jane Grimwood15, Jeremy Schmutz15, Pierre Cardol16, Pierre Cardol3, Heriberto Cerutti17, Guillaume Chanfreau1, Chun-Long Chen9, Valérie Cognat7, Martin T. Croft18, Rachel M. Dent6, Susan K. Dutcher19, Emilio Fernández20, Hideya Fukuzawa21, David González-Ballester22, Diego González-Halphen23, Armin Hallmann, Marc Hanikenne16, Michael Hippler24, William Inwood6, Kamel Jabbari25, Ming Kalanon26, Richard Kuras3, Paul A. Lefebvre11, Stéphane D. Lemaire27, Alexey V. Lobanov17, Martin Lohr28, Andrea L Manuell29, Iris Meier30, Laurens Mets31, Maria Mittag32, Telsa M. Mittelmeier33, James V. Moroney34, Jeffrey L. Moseley22, Carolyn A. Napoli33, Aurora M. Nedelcu35, Krishna K. Niyogi6, Sergey V. Novoselov17, Ian T. Paulsen, Greg Pazour5, Saul Purton36, Jean-Philippe Ral7, Diego Mauricio Riaño-Pachón37, Wayne R. Riekhof, Linda A. Rymarquis38, Michael Schroda, David B. Stern39, James G. Umen14, Robert D. Willows40, Nedra F. Wilson41, Sara L. Zimmer39, Jens Allmer42, Janneke Balk18, Katerina Bisova43, Chong-Jian Chen9, Marek Eliáš44, Karla C Gendler33, Charles R. Hauser45, Mary Rose Lamb46, Heidi K. Ledford6, Joanne C. Long1, Jun Minagawa47, M. Dudley Page1, Junmin Pan48, Wirulda Pootakham22, Sanja Roje49, Annkatrin Rose50, Eric Stahlberg30, Aimee M. Terauchi1, Pinfen Yang51, Steven G. Ball7, Chris Bowler25, Carol L. Dieckmann33, Vadim N. Gladyshev17, Pamela J. Green38, Richard A. Jorgensen33, Stephen P. Mayfield29, Bernd Mueller-Roeber37, Sathish Rajamani30, Richard T. Sayre30, Peter Brokstein2, Inna Dubchak2, David Goodstein2, Leila Hornick2, Y. Wayne Huang2, Jinal Jhaveri2, Yigong Luo2, Diego Martinez2, Wing Chi Abby Ngau2, Bobby Otillar2, Alexander Poliakov2, Aaron Porter2, Lukasz Szajkowski2, Gregory Werner2, Kemin Zhou2, Igor V. Grigoriev2, Daniel S. Rokhsar6, Daniel S. Rokhsar2, Arthur R. Grossman22 
University of California, Los Angeles1, United States Department of Energy2, University of Paris3, Duke University4, University of Massachusetts Medical School5, University of California, Berkeley6, Centre national de la recherche scientifique7, University of California, San Francisco8, Sun Yat-sen University9, University of Tennessee Health Science Center10, University of Minnesota11, Iowa State University12, Genetic Information Research Institute13, Salk Institute for Biological Studies14, Stanford University15, University of Liège16, University of Nebraska–Lincoln17, University of Cambridge18, Washington University in St. Louis19, University of Córdoba (Spain)20, Kyoto University21, Carnegie Institution for Science22, National Autonomous University of Mexico23, University of Münster24, École Normale Supérieure25, University of Melbourne26, University of Paris-Sud27, University of Mainz28, Scripps Research Institute29, Ohio State University30, University of Chicago31, University of Jena32, University of Arizona33, Louisiana State University34, University of New Brunswick35, University College London36, University of Potsdam37, Delaware Biotechnology Institute38, Boyce Thompson Institute for Plant Research39, Macquarie University40, Oklahoma State University Center for Health Sciences41, İzmir University of Economics42, Academy of Sciences of the Czech Republic43, Charles University in Prague44, St. Edward's University45, University of Puget Sound46, Hokkaido University47, Tsinghua University48, Washington State University49, Appalachian State University50, Marquette University51
12 Oct 2007-Science
TL;DR: Analyses of the Chlamydomonas genome advance the understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella.
Abstract: Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the approximately 120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella.

2,554 citations


Authors

Showing all 32719 results

NameH-indexPapersCitations
Ronald C. Petersen1781091153067
P. Chang1702154151783
Vaclav Vrba141129895671
Milos Lokajicek139151198888
Christopher D. Manning138499147595
Yves Sirois137133495714
Rupert Leitner136120190597
Gerald M. Reaven13379980351
Roberto Sacchi132118689012
S. Errede132148198663
Mark Neubauer131125289004
Peter Kodys131126285267
Panos A Razis130128790704
Vit Vorobel13091979444
Jehad Mousa130122686564
Network Information
Related Institutions (5)
University of Milan
139.7K papers, 4.6M citations

90% related

Sapienza University of Rome
155.4K papers, 4.3M citations

90% related

University of Amsterdam
140.8K papers, 5.9M citations

89% related

University of Oxford
258.1K papers, 12.9M citations

89% related

Tel Aviv University
115.9K papers, 3.9M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023203
2022555
20214,841
20204,793
20194,421
20183,991