scispace - formally typeset
Search or ask a question
Institution

IBM

CompanyArmonk, New York, United States
About: IBM is a company organization based out in Armonk, New York, United States. It is known for research contribution in the topics: Layer (electronics) & Signal. The organization has 134567 authors who have published 253905 publications receiving 7458795 citations. The organization is also known as: International Business Machines Corporation & Big Blue.


Papers
More filters
Proceedings ArticleDOI
Gregory J. Chaitin1
01 Jun 1982
TL;DR: This work has discovered how to extend the graph coloring approach so that it naturally solves the spilling problem, and produces better object code and takes much less compile time.
Abstract: In a previous paper we reported the successful use of graph coloring techniques for doing global register allocation in an experimental PL/I optimizing compiler. When the compiler cannot color the register conflict graph with a number of colors equal to the number of available machine registers, it must add code to spill and reload registers to and from storage. Previously the compiler produced spill code whose quality sometimes left much to be desired, and the ad hoe techniques used took considerable amounts of compile time. We have now discovered how to extend the graph coloring approach so that it naturally solves the spilling problem. Spill decisions are now made on the basis of the register conflict graph and cost estimates of the value of keeping the result of a computation in a register rather than in storage. This new approach produces better object code and takes much less compile time.

895 citations

Journal ArticleDOI
TL;DR: In this paper, a superconducting ring of normal metal driven by an external magnetic flux acts like a Josephson junction, except that 2e is replaced by e.g.

894 citations

Journal ArticleDOI
TL;DR: It is found that electrons with repulsive interactions, incident upon a single barrier, are completely reflected at zeroTemperature, and at zero temperature, power-law current-voltage characteristics are predicted.
Abstract: We study theoretically transport of a one-dimensional single-channel interacting electron gas through barriers or constrictions. We find that electrons with repulsive interactions, incident upon a single barrier, are completely reflected at zero temperature. At finite temperature (T), the conductance is shown to vanish as a power of T, and at zero temperature, power-law current-voltage characteristics are predicted. For attractive interactions, we predict perfect transmission at zero temperature, with similar power-law corrections. We also study resonant tunneling through a double-barrier structure and related effects associated with the Coulomb blockade. Resonant peaks in the transmission are possible, provided the interactions are not too strongly repulsive. However, in contrast to resonant tunneling in a noninteracting electron gas, we find that in the presence of interactions the width of the resonance vanishes, as a power of temperature, in the zero-temperature limit. Moreover, the resonance line shapes are shown to be described by a universal scaling function, which has power law, but non-Lorentzian tails. For a particular choice of interaction strengths, we present an exact solution of our model, which verifies the scaling assumptions and provides an explicit expression for the scaling function. We also consider the role played by the electron-spin degree of freedom in modifying the trasnsmission through barriers. With spin, there are four possible phases corresponding to perfect transmission or perfect reflection of charge and spin. We present phase diagrams for these different behaviors and analyze the nontrivial transitions between them. At these transitions we find that the conductance or transmission is universal---depending only on the dimensionless conductance of the leads and not on the details of the barriers. In the case of resonant tunneling with spin, we discuss the ``Kondo'' resonance, which occurs when there is a spin degeneracy for electrons between the two barriers. Many of the predictions should be directly testable in gated GaAs wires.

891 citations

Proceedings ArticleDOI
01 May 2001
TL;DR: The results suggest that contrary to most expectations, with some modifications, a native implementations in an RDBMS can support this class of query much more efficiently.
Abstract: Virtually all proposals for querying XML include a class of query we term “containment queries”. It is also clear that in the foreseeable future, a substantial amount of XML data will be stored in relational database systems. This raises the question of how to support these containment queries. The inverted list technology that underlies much of Information Retrieval is well-suited to these queries, but should we implement this technology (a) in a separate loosely-coupled IR engine, or (b) using the native tables and query execution machinery of the RDBMS? With option (b), more than twenty years of work on RDBMS query optimization, query execution, scalability, and concurrency control and recovery immediately extend to the queries and structures that implement these new operations. But all this will be irrelevant if the performance of option (b) lags that of (a) by too much. In this paper, we explore some performance implications of both options using native implementations in two commercial relational database systems and in a special purpose inverted list engine. Our performance study shows that while RDBMSs are generally poorly suited for such queries, under conditions they can outperform an inverted list engine. Our analysis further identifies two significant causes that differentiate the performance of the IR and RDBMS implementations: the join algorithms employed and the hardware cache utilization. Our results suggest that contrary to most expectations, with some modifications, a native implementations in an RDBMS can support this class of query much more efficiently.

891 citations

Journal ArticleDOI
TL;DR: A class of hybrid algorithms, of which branch-and-bound and polyhedral outer approximation are the two extreme cases, are proposed and implemented and Computational results that demonstrate the effectiveness of this framework are reported.

891 citations


Authors

Showing all 134658 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Anil K. Jain1831016192151
Hyun-Chul Kim1764076183227
Rodney S. Ruoff164666194902
Tobin J. Marks1591621111604
Jean M. J. Fréchet15472690295
Albert-László Barabási152438200119
György Buzsáki15044696433
Stanislas Dehaene14945686539
Philip S. Yu1481914107374
James M. Tour14385991364
Thomas P. Russell141101280055
Naomi J. Halas14043582040
Steven G. Louie13777788794
Daphne Koller13536771073
Network Information
Related Institutions (5)
Carnegie Mellon University
104.3K papers, 5.9M citations

93% related

Georgia Institute of Technology
119K papers, 4.6M citations

92% related

Bell Labs
59.8K papers, 3.1M citations

90% related

Microsoft
86.9K papers, 4.1M citations

89% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022137
20213,163
20206,336
20196,427
20186,278