scispace - formally typeset
Search or ask a question
Institution

IBM

CompanyArmonk, New York, United States
About: IBM is a company organization based out in Armonk, New York, United States. It is known for research contribution in the topics: Layer (electronics) & Signal. The organization has 134567 authors who have published 253905 publications receiving 7458795 citations. The organization is also known as: International Business Machines Corporation & Big Blue.


Papers
More filters
Journal ArticleDOI
TL;DR: A class of probabilistic counting algorithms with which one can estimate the number of distinct elements in a large collection of data in a single pass using only a small additional storage and only a few operations per element scanned is introduced.

1,344 citations

Journal ArticleDOI
TL;DR: Tight upper and lower bounds are provided for the number of inputs and outputs (I/OS) between internal memory and secondary storage required for five sorting-related problems: sorting, the fast Fourier transform (FFT), permutation networks, permuting, and matrix transposition.
Abstract: We provide tight upper and lower bounds, up to a constant factor, for the number of inputs and outputs (I/OS) between internal memory and secondary storage required for five sorting-related problems: sorting, the fast Fourier transform (FFT), permutation networks, permuting, and matrix transposition. The bounds hold both in the worst case and in the average case, and in several situations the constant factors match. Secondary storage is modeled as a magnetic disk capable of transferring P blocks each containing B records in a single time unit; the records in each block must be input from or output to B contiguous locations on the disk. We give two optimal algorithms for the problems, which are variants of merge sorting and distribution sorting. In particular we show for P = 1 that the standard merge sorting algorithm is an optimal external sorting method, up to a constant factor in the number of I/Os. Our sorting algorithms use the same number of I/Os as does the permutation phase of key sorting, except when the internal memory size is extremely small, thus affirming the popular adage that key sorting is not faster. We also give a simpler and more direct derivation of Hong and Kung's lower bound for the FFT for the special case B = P = O(1).

1,344 citations

Book ChapterDOI
08 Oct 2016
TL;DR: A unified deep neural network, denoted the multi-scale CNN (MS-CNN), is proposed for fast multi- scale object detection, which is learned end-to-end, by optimizing a multi-task loss.
Abstract: A unified deep neural network, denoted the multi-scale CNN (MS-CNN), is proposed for fast multi-scale object detection. The MS-CNN consists of a proposal sub-network and a detection sub-network. In the proposal sub-network, detection is performed at multiple output layers, so that receptive fields match objects of different scales. These complementary scale-specific detectors are combined to produce a strong multi-scale object detector. The unified network is learned end-to-end, by optimizing a multi-task loss. Feature upsampling by deconvolution is also explored, as an alternative to input upsampling, to reduce the memory and computation costs. State-of-the-art object detection performance, at up to 15 fps, is reported on datasets, such as KITTI and Caltech, containing a substantial number of small objects.

1,342 citations

Proceedings ArticleDOI
26 May 2013
TL;DR: Modelling deep neural networks with rectified linear unit (ReLU) non-linearities with minimal human hyper-parameter tuning on a 50-hour English Broadcast News task shows an 4.2% relative improvement over a DNN trained with sigmoid units, and a 14.4% relative improved over a strong GMM/HMM system.
Abstract: Recently, pre-trained deep neural networks (DNNs) have outperformed traditional acoustic models based on Gaussian mixture models (GMMs) on a variety of large vocabulary speech recognition benchmarks. Deep neural nets have also achieved excellent results on various computer vision tasks using a random “dropout” procedure that drastically improves generalization error by randomly omitting a fraction of the hidden units in all layers. Since dropout helps avoid over-fitting, it has also been successful on a small-scale phone recognition task using larger neural nets. However, training deep neural net acoustic models for large vocabulary speech recognition takes a very long time and dropout is likely to only increase training time. Neural networks with rectified linear unit (ReLU) non-linearities have been highly successful for computer vision tasks and proved faster to train than standard sigmoid units, sometimes also improving discriminative performance. In this work, we show on a 50-hour English Broadcast News task that modified deep neural networks using ReLUs trained with dropout during frame level training provide an 4.2% relative improvement over a DNN trained with sigmoid units, and a 14.4% relative improvement over a strong GMM/HMM system. We were able to obtain our results with minimal human hyper-parameter tuning using publicly available Bayesian optimization code.

1,342 citations

Book ChapterDOI
Victor Shoup1
11 May 1997
TL;DR: Lower bounds on the complexity of the discrete logarithm and related problems are proved that match the known upper bounds: any generic algorithm must perform Ω(p1/2) group operations, where p is the largest prime dividing the order of the group.
Abstract: This paper considers the computational complexity of the discrete logarithm and related problems in the context of "generic algorithms"--that is, algorithms which do not exploit any special properties of the encodings of group elements, other than the property that each group element is encoded as a unique binary string. Lower bounds on the complexity of these problems are proved that match the known upper bounds: any generic algorithm must perform Ω(p1/2) group operations, where p is the largest prime dividing the order of the group. Also, a new method for correcting a faulty Diffie-Hellman oracle is presented.

1,341 citations


Authors

Showing all 134658 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Anil K. Jain1831016192151
Hyun-Chul Kim1764076183227
Rodney S. Ruoff164666194902
Tobin J. Marks1591621111604
Jean M. J. Fréchet15472690295
Albert-László Barabási152438200119
György Buzsáki15044696433
Stanislas Dehaene14945686539
Philip S. Yu1481914107374
James M. Tour14385991364
Thomas P. Russell141101280055
Naomi J. Halas14043582040
Steven G. Louie13777788794
Daphne Koller13536771073
Network Information
Related Institutions (5)
Carnegie Mellon University
104.3K papers, 5.9M citations

93% related

Georgia Institute of Technology
119K papers, 4.6M citations

92% related

Bell Labs
59.8K papers, 3.1M citations

90% related

Microsoft
86.9K papers, 4.1M citations

89% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022137
20213,163
20206,336
20196,427
20186,278