scispace - formally typeset
Search or ask a question
Institution

IBM

CompanyArmonk, New York, United States
About: IBM is a company organization based out in Armonk, New York, United States. It is known for research contribution in the topics: Layer (electronics) & Signal. The organization has 134567 authors who have published 253905 publications receiving 7458795 citations. The organization is also known as: International Business Machines Corporation & Big Blue.


Papers
More filters
01 Jan 1992
TL;DR: It is concluded that an imperfect defense against computer viruses can still be highly effective in preventing their widespread proliferation, provided that the infection rate does not exceed a well-defined critical epidemic threshold.
Abstract: The strong analogy between biological viruses and their computational counterparts has motivated the authors to adapt the techniques of mathematical epidemiology to the study of computer virus propagation In order to allow for the most general patterns of program sharing, a standard epidemiological model is extended by placing it on a directed graph and a combination of analysis and simulation is used to study its behavior The conditions under which epidemics are likely to occur are determined, and, in cases where they do, the dynamics of the expected number of infected individuals are examined as a function of time It is concluded that an imperfect defense against computer viruses can still be highly effective in preventing their widespread proliferation, provided that the infection rate does not exceed a well-defined critical epidemic threshold >

743 citations

Book ChapterDOI
23 Mar 1998
TL;DR: This work presents an approach for a system that constructs process models from logs of past, unstructured executions of the given process, and presents results from applying the algorithm to synthetic data sets as well as process logs obtained from an IBM Flowmark installation.
Abstract: Modern enterprises increasingly use the workflow paradigm to prescribe how business processes should be performed. Processes are typically modeled as annotated activity graphs. We present an approach for a system that constructs process models from logs of past, unstructured executions of the given process. The graph so produced conforms to the dependencies and past executions present in the log. By providing models that capture the previous executions of the process, this technique allows easier introduction of a workflow system and evaluation and evolution of existing process models. We also present results from applying the algorithm to synthetic data sets as well as process logs obtained from an IBM Flowmark installation.

742 citations

Patent
29 Dec 1999
TL;DR: In this paper, a method, system, program, and method of doing business are disclosed for electronic commerce that includes the feature of a "thin" consumer's wallet by providing issuers with an active role in each payment.
Abstract: A method, system, program, and method of doing business are disclosed for electronic commerce that includes the feature of a “thin” consumer's wallet by providing issuers with an active role in each payment. This is achieved by adding an issuer gateway and moving the credit/debit card authorization function from the merchant to the issuer. This enables an issuer to independently choose alternate authentication mechanisms without changing the acquirer gateway. It also results in a significant reduction in complexity, thereby improving the ease of implementation and overall performance.

741 citations

Proceedings ArticleDOI
20 May 2007
TL;DR: These results show that Trojans that are 3-4 orders of magnitude smaller than the main circuit can be detected by signal processing techniques and provide a starting point to address this important problem.
Abstract: Hardware manufacturers are increasingly outsourcing their IC fabrication work overseas due to their much lower cost structure. This poses a significant security risk for ICs used for critical military and business applications. Attackers can exploit this loss of control to substitute Trojan ICs for genuine ones or insert a Trojan circuit into the design or mask used for fabrication. We show that a technique borrowed from side-channel cryptanalysis can be used to mitigate this problem. Our approach uses noise modeling to construct a set of fingerprints/or an IC family utilizing side- channel information such as power, temperature, and electromagnetic (EM) profiles. The set of fingerprints can be developed using a few ICs from a batch and only these ICs would have to be invasively tested to ensure that they were all authentic. The remaining ICs are verified using statistical tests against the fingerprints. We describe the theoretical framework and present preliminary experimental results to show that this approach is viable by presenting results obtained by using power simulations performed on representative circuits with several different Trojan circuitry. These results show that Trojans that are 3-4 orders of magnitude smaller than the main circuit can be detected by signal processing techniques. While scaling our technique to detect even smaller Trojans in complex ICs with tens or hundreds of millions of transistors would require certain modifications to the IC design process, our results provide a starting point to address this important problem.

741 citations

Journal ArticleDOI
TL;DR: The process steps and design aspects that were developed at IBM to enable the formation of stacked device layers are reviewed, including the descriptions of a glass substrate process to enable through-wafer alignment and a single-damascene patterning and metallization method for the creation of high-aspect-ratio capability.
Abstract: Three-dimensional (3D) integrated circuits (ICs), which contain multiple layers of active devices, have the potential to dramatically enhance chip performance, functionality, and device packing density. They also provide for microchip architecture and may facilitate the integration of heterogeneous materials, devices, and signals. However, before these advantages can be realized, key technology challenges of 3D ICs must be addressed. More specifically, the processes required to build circuits with multiple layers of active devices must be compatible with current state-of-the-art silicon processing technology. These processes must also show manufacturability, i.e., reliability, good yield, maturity, and reasonable cost. To meet these requirements, IBM has introduced a scheme for building 3D ICs based on the layer transfer of functional circuits, and many process and design innovations have been implemented. This paper reviews the process steps and design aspects that were developed at IBM to enable the formation of stacked device layers. Details regarding an optimized layer transfer process are presented, including the descriptions of 1) a glass substrate process to enable through-wafer alignment; 2) oxide fusion bonding and wafer bow compensation methods for improved alignment tolerance during bonding; 3) and a single-damascene patterning and metallization method for the creation of high-aspect-ratio (6:1 108 vias/cm2), and extremely aggressive wafer-to-wafer alignment (submicron) capability.

740 citations


Authors

Showing all 134658 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Anil K. Jain1831016192151
Hyun-Chul Kim1764076183227
Rodney S. Ruoff164666194902
Tobin J. Marks1591621111604
Jean M. J. Fréchet15472690295
Albert-László Barabási152438200119
György Buzsáki15044696433
Stanislas Dehaene14945686539
Philip S. Yu1481914107374
James M. Tour14385991364
Thomas P. Russell141101280055
Naomi J. Halas14043582040
Steven G. Louie13777788794
Daphne Koller13536771073
Network Information
Related Institutions (5)
Carnegie Mellon University
104.3K papers, 5.9M citations

93% related

Georgia Institute of Technology
119K papers, 4.6M citations

92% related

Bell Labs
59.8K papers, 3.1M citations

90% related

Microsoft
86.9K papers, 4.1M citations

89% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022137
20213,163
20206,336
20196,427
20186,278