scispace - formally typeset
Search or ask a question

Showing papers by "ICM Partners published in 2019"


Journal ArticleDOI
TL;DR: SonoCloud-1 treatments were well tolerated and may increase the effectiveness of systemic drug therapies, such as carboplatin, in the brain without inducing neurotoxicity, in patients with recurrent GBM.
Abstract: Purpose: The blood-brain barrier (BBB) limits the efficacy of drug therapies for glioblastoma (GBM). Pre-clinical data indicate that low-intensity pulsed ultrasound (LIPU) can transiently disrupt the BBB and increase intracerebral drug concentrations. Experimental Design: A first-in-man, single-arm, single-center trial (NCT02253212) was initiated to investigate the transient disruption of the BBB in patients with recurrent glioblastoma (rGBM). Patients were implanted with a 1 MHz, 11.5-mm diameter cranial ultrasound device (SonoCloud-1, CarThera, Paris, France). The device was activated monthly to transiently disrupt the BBB before intravenous (IV) carboplatin chemotherapy. Results: Between 2014 and 2016, 21 patients were registered for the study and implanted with the SonoCloud-1; 19 patients received at least one sonication. In 65 US sessions, BBB disruption was visible on T1w MRI for 52 sonications. Treatment-related adverse events observed were transient and manageable: a transient edema at H1 and at D15. No carboplatin-related neurotoxicity was observed. Patients with no or poor BBB disruption (n=8) visible on MRI had a median progression-free survival (PFS) of 2.73 months, and a median overall survival (OS) of 8.64 months. Patients with clear BBB disruption (n=11) had a median PFS of 4.11 months, and a median OS of 12.94 months. Conclusions:SonoCloud-1 treatments were well tolerated and may increase the effectiveness of systemic drug therapies, such as carboplatin, in the brain without inducing neurotoxicity.

195 citations


Journal ArticleDOI
TL;DR: The mesoscale selective plane-illumination microscopy initiative is introduced, an open-hardware project for building and operating a light-sheet microscope that addresses these challenges and is compatible with any type of cleared or expanded sample.
Abstract: Light-sheet microscopy is an ideal technique for imaging large cleared samples; however, the community is still lacking instruments capable of producing volumetric images of centimeter-sized cleared samples with near-isotropic resolution within minutes. Here, we introduce the mesoscale selective plane-illumination microscopy initiative, an open-hardware project for building and operating a light-sheet microscope that addresses these challenges and is compatible with any type of cleared or expanded sample ( www.mesospim.org ).

170 citations



Journal ArticleDOI
TL;DR: The results suggest that the lateralisation of brain functions is distributed along four functional axes: symbolic communication, perception/action, emotion, and decision-making, and the first complete map of functional hemispheric asymmetries in the human brain is reported.
Abstract: Functional lateralisation is a fundamental principle of the human brain. However, a comprehensive taxonomy of functional lateralisation and its organisation in the brain is missing. Here, we report the first complete map of functional hemispheric asymmetries in the human brain, reveal its low dimensional structure, and its relationship with structural inter-hemispheric connectivity. Our results suggest that the lateralisation of brain functions is distributed along four functional axes: symbolic communication, perception/action, emotion, and decision-making. The similarity between this finding and recent work on neurological symptoms give rise to new hypotheses on the mechanisms that support brain recovery after a brain lesion. We also report that cortical regions showing asymmetries in task-evoked activity have reduced connections with the opposite hemisphere. This latter result suggests that during evolution, brain size expansion led to functional lateralisation to avoid excessive conduction delays between the hemispheres.

159 citations


Journal ArticleDOI
TL;DR: It is demonstrated that shifting decision‐making from perception to memory altered the focus of neural activity from unimodal to transmodal regions (and vice versa), and the more pronounced these shifts in neural activity were when decisions relied on memory, the more efficiently individuals performed this task.

92 citations


Journal ArticleDOI
TL;DR: Evidence is provided that alleles associated with Parkinson disease risk, in particular GBA variants, also contribute to the heterogeneity of multiple motor and nonmotor aspects.
Abstract: Objective To determine if any association between previously identified alleles that confer risk for Parkinson disease and variables measuring disease progression. Methods We evaluated the association between 31 risk variants and variables measuring disease progression. A total of 23,423 visits by 4,307 patients of European ancestry from 13 longitudinal cohorts in Europe, North America, and Australia were analyzed. Results We confirmed the importance of GBA on phenotypes. GBA variants were associated with the development of daytime sleepiness (p.N370S: hazard ratio [HR] 3.28 [1.69–6.34]) and possible REM sleep behavior (p.T408M: odds ratio 6.48 [2.04–20.60]). We also replicated previously reported associations of GBA variants with motor/cognitive declines. The other genotype-phenotype associations include an intergenic variant near LRRK2 and the faster development of motor symptom (Hoehn and Yahr scale 3.0 HR 1.33 [1.16–1.52] for the C allele of rs76904798) and an intronic variant in PMVK and the development of wearing-off effects (HR 1.66 [1.19–2.31] for the C allele of rs114138760). Age at onset was associated with TMEM175 variant p.M393T (−0.72 [−1.21 to −0.23] in years), the C allele of rs199347 (intronic region of GPNMB, 0.70 [0.27–1.14]), and G allele of rs1106180 (intronic region of CCDC62, 0.62 [0.21–1.03]). Conclusions This study provides evidence that alleles associated with Parkinson disease risk, in particular GBA variants, also contribute to the heterogeneity of multiple motor and nonmotor aspects. Accounting for genetic variability will be a useful factor in understanding disease course and in minimizing heterogeneity in clinical trials.

91 citations


Journal ArticleDOI
TL;DR: Several reports have identified different patterns of Parkinson's disease progression in individuals carrying missense variants in GBA or LRRK2 genes, but the overall contribution of genetic factors to the severity and progression of Parkinson't disease has not been well studied.
Abstract: BACKGROUND: Several reports have identified different patterns of Parkinson's disease progression in individuals carrying missense variants in GBA or LRRK2 genes. The overall contribution of genetic factors to the severity and progression of Parkinson's disease, however, has not been well studied. OBJECTIVES: To test the association between genetic variants and the clinical features of Parkinson's disease on a genomewide scale. METHODS: We accumulated individual data from 12 longitudinal cohorts in a total of 4093 patients with 22,307 observations for a median of 3.81 years. Genomewide associations were evaluated for 25 cross-sectional and longitudinal phenotypes. Specific variants of interest, including 90 recently identified disease-risk variants, were also investigated post hoc for candidate associations with these phenotypes. RESULTS: Two variants were genomewide significant. Rs382940(T>A), within the intron of SLC44A1, was associated with reaching Hoehn and Yahr stage 3 or higher faster (hazard ratio 2.04 [1.58-2.62]; P value = 3.46E-8). Rs61863020(G>A), an intergenic variant and expression quantitative trait loci for alpha-2A adrenergic receptor, was associated with a lower prevalence of insomnia at baseline (odds ratio 0.63 [0.52-0.75]; P value = 4.74E-8). In the targeted analysis, we found 9 associations between known Parkinson's risk variants and more severe motor/cognitive symptoms. Also, we replicated previous reports of GBA coding variants (rs2230288: p.E365K; rs75548401: p.T408M) being associated with greater motor and cognitive decline over time, and an APOE E4 tagging variant (rs429358) being associated with greater cognitive deficits in patients. CONCLUSIONS: We identified novel genetic factors associated with heterogeneity of Parkinson's disease. The results can be used for validation or hypothesis tests regarding Parkinson's disease. (c) 2019 International Parkinson and Movement Disorder Society.

89 citations


Journal ArticleDOI
TL;DR: The CONSIGN trial confirmed the safety profile of regorafenib from the phase III trials and reinforced the importance of using treatment modifications to manage adverse events.
Abstract: BACKGROUND: In the phase III CORRECT trial, regorafenib significantly improved survival in treatment-refractory metastatic colorectal cancer (mCRC). The CONSIGN study was designed to further characterize regorafenib safety and allow patients access to regorafenib before market authorization. METHODS: This prospective, single-arm study enrolled patients in 25 countries at 186 sites. Patients with treatment-refractory mCRC and an Eastern Cooperative Oncology Group performance status (ECOG PS) ≤1 received regorafenib 160 mg once daily for the first 3 weeks of each 4-week cycle. The primary endpoint was safety. Progression-free survival (PFS) per investigator assessment was the only efficacy evaluation. RESULTS: In total, 2,872 patients were assigned to treatment and 2,864 were treated. Median age was 62 years, ECOG PS 0/1 was 47%/53%, and 74% had received at least three prior regimens for metastatic disease. Median treatment duration was three cycles. Treatment-emergent adverse events (TEAEs) led to dose reduction in 46% of patients. Regorafenib-related TEAEs led to treatment discontinuation in 9%. Grade 5 regorafenib-related TEAEs occurred in <1%. The most common grade ≥3 regorafenib-related TEAEs were hypertension (15%), hand-foot skin reaction (14%), fatigue (13%), diarrhea (5%), and hypophosphatemia (5%). Treatment-emergent grade 3-4 laboratory toxicities included alanine aminotransferase (6%), aspartate aminotransferase (7%), and bilirubin (13%). Ongoing monitoring identified one nonfatal case of regorafenib-related severe drug-induced liver injury per DILI Working Group criteria. Median PFS (95% confidence interval [CI]) was 2.7 months (2.6-2.7). CONCLUSION: In CONSIGN, the frequency and severity of TEAEs were consistent with the known safety profile of regorafenib. PFS was similar to reports of phase III trials. ClinicalTrials.gov: NCT01538680. IMPLICATIONS FOR PRACTICE: Patients with metastatic colorectal cancer (mCRC) who fail treatment with standard therapies, including chemotherapy and monoclonal antibodies targeting vascular endothelial growth factor or epidermal growth factor receptor, have few treatment options. The multikinase inhibitor regorafenib was shown to improve survival in patients with treatment-refractory mCRC in the phase III CORRECT (N = 760) and CONCUR (N = 204) trials. However, safety data on regorafenib for mCRC in a larger number of patients were not available. The CONSIGN trial, carried out prospectively in more than 2,800 patients across 25 countries, confirmed the safety profile of regorafenib from the phase III trials and reinforced the importance of using treatment modifications to manage adverse events.

83 citations


Journal ArticleDOI
30 Oct 2019
TL;DR: Approaches used for the management of TK inhibitors in patients with advanced NSCLC are reviewed to promote the benefits of treatments and minimize the risk of TKI treatment discontinuation and potential TKI–drug interactions are considered.
Abstract: Non-small-cell lung cancer (NSCLC) is the most common form of primary lung cancer. The discovery of several oncogenic driver mutations in patients with NSCLC has allowed the development of personalized treatments based on these specific molecular alterations, in particular in the tyrosine kinase (TK) domain of the epidermal growth factor receptor (EGFR) gene. Gefitinib, erlotinib, afatinib, and osimertinib are TK inhibitors (TKIs) that specifically target EGFR and are currently approved by the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) as first line treatment for sensitive EGFR-mutant patients. However, these four drugs are associated with severe adverse events (AEs) that can significantly impact patient health-related quality of life and patient monitoring. EGFR-TKIs are commonly used together with other types of medication that can substantially interact. Here, we review approaches used for the management of TKI-AEs in patients with advanced NSCLC to promote the benefits of treatments and minimize the risk of TKI treatment discontinuation. We also consider potential TKI–drug interactions and discuss the usefulness of plasma concentration monitoring TKIs based on chromatographic and mass spectrometry approaches to guide clinical decision-making. Adjusting the most appropriate therapeutic strategies and drug doses may improve the performance therapy and prognosis of patients with advanced EGFR-mutated NSCLC.

77 citations


Journal ArticleDOI
TL;DR: Criteria and methodologies for correct identification of the different RCD forms are introduced and how the autophagy machinery is directly associated with specific cell death forms is discussed, which highlights how the balance of the relationship between other cell death pathways and autophile presides over life and death in specific cellular contexts.

71 citations


Journal ArticleDOI
TL;DR: The new microbiota-targeting strategies, such as probiotics and prebiotics, antibiotics, fecal microbiota transplantation and physical activity, which could be effective adjuvant therapies developed in order to improve anticancer therapeutic efficiency are described.
Abstract: Recently, preclinical and clinical studies targeting several types of cancer strongly supported the key role of the gut microbiota in the modulation of host response to anti-tumoral therapies such as chemotherapy, immunotherapy, radiotherapy and even surgery. Intestinal microbiome has been shown to participate in the resistance to a wide range of anticancer treatments by direct interaction with the treatment or by indirectly stimulating host response through immunomodulation. Interestingly, these effects were described on colorectal cancer but also in other types of malignancies. In addition to their role in therapy efficacy, gut microbiota could also impact side effects induced by anticancer treatments. In the first part of this review, we summarized the role of the gut microbiome on the efficacy and side effects of various anticancer treatments and underlying mechanisms. In the second part, we described the new microbiota-targeting strategies, such as probiotics and prebiotics, antibiotics, fecal microbiota transplantation and physical activity, which could be effective adjuvant therapies developed in order to improve anticancer therapeutic efficiency.

Journal ArticleDOI
TL;DR: Using the rationale that BRAF inhibitor monotherapy fails due to feedback activation of the EGFR pathway, BRAF inhibitors have been combined with anti-EGFR agents plus or minus MEK inhibitors; however, the results did not live up to the hopes raised by the concept.
Abstract: Over the past two decades, the molecular characterization of metastatic colorectal cancer (mCRC) has been revolutionized by the routine implementation of RAS and BRAF tests. As a result, it is now known that patients with mCRC harboring BRAF mutations experience a poor prognosis. Although it accounts for only 10% of mCRC, this group is heterogeneous; only the BRAF-V600E mutation, also observed in melanoma, is associated with a very poor prognosis. In terms of treatment, these patients do not benefit from therapeutics targeting the epidermal growth factor receptor (EGFR). In first-line chemotherapy, there are two main options; the first one is to use a triple chemotherapy combination of 5-fluorouracil, irinotecan, and oxaliplatin, with the addition of bevacizumab, because post hoc analysis of randomized trials have reported interesting results. The other option is to use double chemotherapy plus bevacizumab, since anti-EGFR seems to have modest activity in these patients. Only a small percentage of patients who experience failure of this first-line treatment receive second-line treatment. Monotherapy with BRAF inhibitors has failed in this setting, and different combinations have also been tested. Using the rationale that BRAF inhibitor monotherapy fails due to feedback activation of the EGFR pathway, BRAF inhibitors have been combined with anti-EGFR agents plus or minus MEK inhibitors; however, the results did not live up to the hopes raised by the concept. To date, the best results in second-line treatment have been obtained with a combination of vemurafenib, cetuximab, and irinotecan. Despite these advances, further improvements are needed.

Journal ArticleDOI
TL;DR: It is shown that researchers often assess how activations elicited by a variable of interest differ between individuals, and it is argued that the rationale for such analyses offers an over-large analytical and interpretational flexibility that undermines their validity.
Abstract: Explaining and predicting individual behavioural differences induced by clinical and social factors constitutes one of the most promising applications of neuroimaging. In this Perspective, we discuss the theoretical and statistical foundations of the analyses of inter-individual differences in task-related functional neuroimaging. Leveraging a five-year literature review (July 2013-2018), we show that researchers often assess how activations elicited by a variable of interest differ between individuals. We argue that the rationale for such analyses, typically grounded in resource theory, offers an over-large analytical and interpretational flexibility that undermines their validity. We also recall how, in the established framework of the general linear model, inter-individual differences in behaviour can act as hidden moderators and spuriously induce differences in activations. We conclude with a set of recommendations and directions, which we hope will contribute to improving the statistical validity and the neurobiological interpretability of inter-individual difference analyses in task-related functional neuroimaging.

Journal ArticleDOI
TL;DR: NODDI provides higher sensitivity and greater tissue specificity compared with conventional DTI for identifying white matter abnormalities in the presymptomatic C9orf72 carriers and encourages the use of neurite density as a biomarker of the preclinical phase.
Abstract: Objective To assess the added value of neurite orientation dispersion and density imaging (NODDI) compared with conventional diffusion tensor imaging (DTI) and anatomical MRI to detect changes in presymptomatic carriers of chromosome 9 open reading frame 72 ( C9orf72 ) mutation. Methods The PREV-DEMALS (Predict to Prevent Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis) study is a prospective, multicentre, observational study of first-degree relatives of individuals carrying the C9orf72 mutation. Sixty-seven participants (38 presymptomatic C9orf72 mutation carriers (C9+) and 29 non-carriers (C9−)) were included in the present cross-sectional study. Each participant underwent one single-shell, multishell diffusion MRI and three-dimensional T1-weighted MRI. Volumetric measures, DTI and NODDI metrics were calculated within regions of interest. Differences in white matter integrity, grey matter volume and free water fraction between C9+ and C9− individuals were assessed using linear mixed-effects models. Results Compared with C9− , C9+ demonstrated white matter abnormalities in 10 tracts with neurite density index and only 5 tracts with DTI metrics. Effect size was significantly higher for the neurite density index than for DTI metrics in two tracts. No tract had a significantly higher effect size for DTI than for NODDI. For grey matter cortical analysis, free water fraction was increased in 13 regions in C9+ , whereas 11 regions displayed volumetric atrophy. Conclusions NODDI provides higher sensitivity and greater tissue specificity compared with conventional DTI for identifying white matter abnormalities in the presymptomatic C9orf72 carriers. Our results encourage the use of neurite density as a biomarker of the preclinical phase. Trial registration number NCT02590276.

Journal ArticleDOI
TL;DR: This work presents a meta-modelling framework that allows us to assess the role of emotion, language, and self-consistency in the decision-making process and assesses its importance in both the positive and the negative consequences.
Abstract: 1 Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany 2 Department of Cognitive Sciences, Macquarie University, Sydney, Australia 3 Mozilla 4 Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland 5 Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, Maryland 20892 6 UC Berkeley, Project Jupyter 7 Institut du cerveau et de la moelle épinière (ICM), Paris, France 8 Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan, Italy 9 Institute for Learning and Brain Sciences, University of Washington, Seattle, WA, USA 10 Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Germany 11 Max-Planck-Institute for Empirical Aesthetics, Frankfurt a.M., Germany 12 Institute of Psychology, University of Graz, Austria 13 University of Oregon, Eugene OR, USA 14 Université Paris-Saclay, Inria, CEA, Palaiseau, France 15 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA DOI: 10.21105/joss.01896

Journal ArticleDOI
TL;DR: This is the first report to compare the two techniques LVD is a promising and safe procedure to induce a fast FRL hypertrophy, showing similar mortality/morbidity rates during and after surgery compared to PVE.
Abstract: Background: Preoperative portal vein embolization (PVE) is currently the standard technique used routinely to increase the size of the future remnant liver (FRL) before major hepatectomies. The degree of hypertrophy (DH) is approximatively 10% and requires on average six weeks. ALPPS is faster and achieves a good DH but with a higher morbidity and mortality. One method recently proposed to increase the FRL is liver venous deprivation (LVD), but its clinical and operative impact is still unknown. The aim of this study is to compare intra- and postoperative morbidity/mortality and the histological evaluation of the liver parenchyma between PVE and LVD in patients undergoing anatomic right hepatectomy. Methods: Fifty-three consecutive patients undergoing PVE and LVD before a major hepatectomy were retrospectively analysed between 2015 and 2017. In order to reduce the bias, only potential standard right hepatectomies were selected. Surgical resections and the radiologic procedures were performed by the same Institution. Intra-operative parameters (transfusions, perfusions, bleeding, operative time), postoperative complications (Clavien-Dindo and ISGLS criteria), and histological findings were compared. Results: To induce FRL growth 16 patients underwent PVE and 13 LVD. One patient of the PVE group was not resected due to peritoneal metastases. Surgery was performed for hepatocellular carcinoma (PVE =9, LVD =3), metastases (PVE =5, LVD =10), or others diseases (PVE =2, LVD =0). Per- and post-operative morbidity/mortality rates after PVE and LVD procedures were null. No differences between the two groups were found in terms of intraoperative bleeding (median: 550 vs . 1,200 mL; P=0.36), hepatic pedicle clamping (5 vs . 3 patients; P=0.69), intraoperative red blood cells transfusions (median: 622 vs . 594; P=0.42) and operative time (median: 270 vs . 330 min; P=0.34). Post-operative course was similar when comparing both medical and surgical complications in the two arms (PVE n=7, LVD n=10, P=0.1). Major complications (Clavien-Dindo ≥ IIIa) occurred in 3 patients undergoing PVE and in 1 patient of the LVD group (P=0.6). No difference in biliary leak (P=0.1), haemorrhage (P=0.2) and liver failure (P=0.64) was found. One cirrhotic patient in the group of PVE died of post-operative liver failure due to left portal vein thrombosis. Although we experienced a more marked liver damage when assessing on neoplastic liver parenchyma, no statistical difference was observed in terms of atrophy (P=0.19), necrosis (P=0.5), hemorrhage (P=0.42) and sinusoidal dilatation (P=0.69). Conclusions: Despite the limitations of our study, to our knowledge this is the first report to compare the two techniques LVD is a promising and safe procedure to induce a fast FRL hypertrophy, showing similar mortality/morbidity rates during and after surgery compared to PVE.

Journal ArticleDOI
TL;DR: High CTSD mRNA levels correlated with shorter recurrence-free survival in TNBC, and extracellular cath-D was detected in the tumor microenvironment, but not in matched normal breast stroma, and immunomodulatory antibody-based strategy against Cath-D is a promising immunotherapy to treat patients with TNBC.
Abstract: Triple-negative breast cancer (TNBC) treatment is currently restricted to chemotherapy. Hence, tumor-specific molecular targets and/or alternative therapeutic strategies for TNBC are urgently needed. Immunotherapy is emerging as an exciting treatment option for TNBC patients. The aspartic protease cathepsin D (cath-D), a marker of poor prognosis in breast cancer (BC), is overproduced and hypersecreted by human BC cells. This study explores whether cath-D is a tumor cell-associated extracellular biomarker and a potent target for antibody-based therapy in TNBC. Cath-D prognostic value and localization was evaluated by transcriptomics, proteomics and immunohistochemistry in TNBC. First-in-class anti-cath-D human scFv fragments binding to both human and mouse cath-D were generated using phage display and cloned in the human IgG1 λ format (F1 and E2). Anti-cath-D antibody biodistribution, antitumor efficacy and in vivo underlying mechanisms were investigated in TNBC MDA-MB-231 tumor xenografts in nude mice. Antitumor effect was further assessed in TNBC patient-derived xenografts (PDXs). High CTSD mRNA levels correlated with shorter recurrence-free survival in TNBC, and extracellular cath-D was detected in the tumor microenvironment, but not in matched normal breast stroma. Anti-cath-D F1 and E2 antibodies accumulated in TNBC MDA-MB-231 tumor xenografts, inhibited tumor growth and improved mice survival without apparent toxicity. The Fc function of F1, the best antibody candidate, was essential for maximal tumor inhibition in the MDA-MB-231 model. Mechanistically, F1 antitumor response was triggered through natural killer cell activation via IL-15 upregulation, associated with granzyme B and perforin production, and the release of antitumor IFNγ cytokine. The F1 antibody also prevented the tumor recruitment of immunosuppressive tumor-associated macrophages M2 and myeloid-derived suppressor cells, a specific effect associated with a less immunosuppressive tumor microenvironment highlighted by TGFβ decrease. Finally, the antibody F1 inhibited tumor growth of two TNBC PDXs, isolated from patients resistant or not to neo-adjuvant chemotherapy. Cath-D is a tumor-specific extracellular target in TNBC suitable for antibody-based therapy. Immunomodulatory antibody-based strategy against cath-D is a promising immunotherapy to treat patients with TNBC.

Journal ArticleDOI
TL;DR: The results strongly suggest that obesity, through proinflammatory pathways, is a predisposing factor to the development of psoriasis and that obesity aggravates existing Psoriasis.
Abstract: Psoriasis is a common chronic inflammatory multisystemic disease with a complex pathogenesis consisting of genetic, immunological, and environmental components. It is associated with a number of comorbidities, including diabetes, metabolic syndrome, obesity, and myocardial infarction. In addition, the severity of psoriasis seems to be related to the severity of obesity. Patients with higher levels of obesity show poorer response to systemic treatments of psoriasis. Several studies have demonstrated that white adipose tissue is a crucial site of the formation of proinflammatory adipokines such as leptin, adiponectin, and resistin and classical cytokines such as interleukin- (IL-) 6 and tumour necrosis factor-α. In psoriasis, due to the proliferation of Th1, Th17, and Th22 cells, IL-22, among others, is produced in addition to the abovementioned cytokines. With respect to leptin and resistin, both of these adipokines are present in high levels in obese persons with psoriasis. Further, the plasma levels of leptin and resistin are related to the severity of psoriasis. These results strongly suggest that obesity, through proinflammatory pathways, is a predisposing factor to the development of psoriasis and that obesity aggravates existing psoriasis. Different inflammatory biomarkers link psoriasis and obesity. In this paper, the most important ones are described.

Journal ArticleDOI
TL;DR: Carmena was a randomized phase III trial, testing the benefit of CN followed by sunitinib (arm A) vs sunit inib alone (arm B), with stratification by MSKCC risk groups in 450 mRCC pa...
Abstract: 4508Background: Carmena was a randomized phase III trial, testing the benefit of CN followed by sunitinib (arm A) vs sunitinib alone (arm B), with stratification by MSKCC risk groups in 450 mRCC pa...

Journal ArticleDOI
TL;DR: The pathophysiological model in which the LC plays a critical role in AD and may thus be a potential therapeutic target is supported and the LC‐I was correlated with memory performance of typical AD.
Abstract: Neuropathological studies showed early locus coeruleus (LC) neuronal loss associated with tauopathy in Alzheimer's Disease (AD). We used the LC signal intensity (LC-I) on 3T MRI to assess the LC integrity in AD (n = 37) and controls (n = 17). The LC-I was decreased in AD regardless of typical (amnesic) and atypical presentation (logopenic aphasia/visuo-spatial deficit), from the prodromal stage, and independently of the amyloid load measured by PiB-PET. The LC-I was correlated with memory performance of typical AD. This supports the pathophysiological model in which the LC plays a critical role in AD and may thus be a potential therapeutic target.

Journal ArticleDOI
TL;DR: A role of ubiquitylation in mitochondrial import regulation is uncovered and it is suggested that loss of this regulatory loop may underlie the pathophysiology of Parkinson’s disease, providing novel opportunities for therapeutic intervention.
Abstract: Most of over a thousand mitochondrial proteins are encoded by nuclear genes and must be imported from the cytosol. Little is known about the cytosolic events regulating mitochondrial protein import, partly due to the lack of appropriate tools for its assessment in living cells. We engineered an inducible biosensor for monitoring the main presequence-mediated import pathway with a quantitative, luminescence-based readout. This tool was used to explore the regulation of mitochondrial import by the PINK1 kinase-driven Parkin ubiquitin ligase, which is dysfunctional in autosomal recessive Parkinson’s disease. We show that mitochondrial import was stimulated by Parkin, but not by disease-causing Parkin variants. This effect was dependent on Parkin activation by PINK1 and accompanied by an increase in the abundance of K11 ubiquitin chains on mitochondria and by ubiquitylation of subunits of the translocase of outer mitochondrial membrane. Mitochondrial import efficiency was abnormally low in cells from patients with PINK1- and PARK2-linked Parkinson’s disease and was restored by phosphomimetic ubiquitin in cells with residual Parkin activity. Altogether, these findings uncover a role of ubiquitylation in mitochondrial import regulation and suggest that loss of this regulatory loop may underlie the pathophysiology of Parkinson’s disease, providing novel opportunities for therapeutic intervention.

Journal ArticleDOI
TL;DR: A pivotal role for CYP46A1 and brain cholesterol metabolism in neuronal function is confirmed, pointing to a key contribution of the neuronal cholesterol pathway in mechanisms mediating clearance of aggregate-prone proteins.
Abstract: Spinocerebellar ataxias (SCAs) are devastating neurodegenerative disorders for which no curative or preventive therapies are available. Deregulation of brain cholesterol metabolism and impaired brain cholesterol turnover have been associated with several neurodegenerative diseases. SCA3 or Machado-Joseph disease (MJD) is the most prevalent ataxia worldwide. We show that cholesterol 24-hydroxylase (CYP46A1), the key enzyme allowing efflux of brain cholesterol and activating brain cholesterol turnover, is decreased in cerebellar extracts from SCA3 patients and SCA3 mice. We investigated whether reinstating CYP46A1 expression would improve the disease phenotype of SCA3 mouse models. We show that administration of adeno-associated viral vectors encoding CYP46A1 to a lentiviral-based SCA3 mouse model reduces mutant ataxin-3 accumulation, which is a hallmark of SCA3, and preserves neuronal markers. In a transgenic SCA3 model with a severe motor phenotype we confirm that cerebellar delivery of AAVrh10-CYP46A1 is strongly neuroprotective in adult mice with established pathology. CYP46A1 significantly decreases ataxin-3 protein aggregation, alleviates motor impairments and improves SCA3-associated neuropathology. In particular, improvement in Purkinje cell number and reduction of cerebellar atrophy are observed in AAVrh10-CYP46A1-treated mice. Conversely, we show that knocking-down CYP46A1 in normal mouse brain impairs cholesterol metabolism, induces motor deficits and produces strong neurodegeneration with impairment of the endosomal-lysosomal pathway, a phenotype closely resembling that of SCA3. Remarkably, we demonstrate for the first time both in vitro, in a SCA3 cellular model, and in vivo, in mouse brain, that CYP46A1 activates autophagy, which is impaired in SCA3, leading to decreased mutant ataxin-3 deposition. More broadly, we show that the beneficial effect of CYP46A1 is also observed with mutant ataxin-2 aggregates. Altogether, our results confirm a pivotal role for CYP46A1 and brain cholesterol metabolism in neuronal function, pointing to a key contribution of the neuronal cholesterol pathway in mechanisms mediating clearance of aggregate-prone proteins. This study identifies CYP46A1 as a relevant therapeutic target not only for SCA3 but also for other SCAs.

Journal ArticleDOI
TL;DR: In this first ctDNA assessment on a large series coming from a phase III clinical trial, cTDNA was confirmed as an independent prognostic marker and 6 months of treatment seems better in both ct DNA+ and- pts.

Journal ArticleDOI
TL;DR: Analysis of near-death experiences sheds light on the long-standing link between certain drugs and the experience of "dying", suggests that ketamine could be used as a safe and reversible experimental model for NDE phenomenology, and supports the speculation that endogenous NMDA antagonists with neuroprotective properties may be released in the proximity of death.

Journal ArticleDOI
TL;DR: The paper outlines the rationale, design and methodology of the first study being undertaken by the newly established R-LiNK collaboration and describes how the project may help to refine the clinical response phenotype and could translate into the personalization of lithium treatment.
Abstract: Lithium is recommended as a first line treatment for bipolar disorders. However, only 30% of patients show an optimal outcome and variability in lithium response and tolerability is poorly understood. It remains difficult for clinicians to reliably predict which patients will benefit without recourse to a lengthy treatment trial. Greater precision in the early identification of individuals who are likely to respond to lithium is a significant unmet clinical need. The H2020-funded Response to Lithium Network (R-LiNK; http://www.r-link.eu.com/ ) will undertake a prospective cohort study of over 300 individuals with bipolar-I-disorder who have agreed to commence a trial of lithium treatment following a recommendation by their treating clinician. The study aims to examine the early prediction of lithium response, non-response and tolerability by combining systematic clinical syndrome subtyping with examination of multi-modal biomarkers (or biosignatures), including omics, neuroimaging, and actigraphy, etc. Individuals will be followed up for 24 months and an independent panel will assess and classify each participants’ response to lithium according to predefined criteria that consider evidence of relapse, recurrence, remission, changes in illness activity or treatment failure (e.g. stopping lithium; new prescriptions of other mood stabilizers) and exposure to lithium. Novel elements of this study include the recruitment of a large, multinational, clinically representative sample specifically for the purpose of studying candidate biomarkers and biosignatures; the application of lithium-7 magnetic resonance imaging to explore the distribution of lithium in the brain; development of a digital phenotype (using actigraphy and ecological momentary assessment) to monitor daily variability in symptoms; and economic modelling of the cost-effectiveness of introducing biomarker tests for the customisation of lithium treatment into clinical practice. Also, study participants with sub-optimal medication adherence will be offered brief interventions (which can be delivered via a clinician or smartphone app) to enhance treatment engagement and to minimize confounding of lithium non-response with non-adherence. The paper outlines the rationale, design and methodology of the first study being undertaken by the newly established R-LiNK collaboration and describes how the project may help to refine the clinical response phenotype and could translate into the personalization of lithium treatment.

Journal ArticleDOI
01 Dec 2019-Ejso
TL;DR: Oxaliplatin-based PIPAC appears to be a safe treatment that offers good symptom control and promising survival for patients with advanced peritoneal disease.
Abstract: Introduction Pressurized intraperitoneal aerosol chemotherapy (PIPAC) is a new drug delivery method used in patients with peritoneal cancer (PC) of primary or secondary origin. Intraperitoneal use of oxaliplatin raises concerns about toxicity, especially abdominal pain. The objective of this study was to assess the tolerance of PIPAC with oxaliplatin (PIPAC-Ox) in a large cohort of patients and to identify the risk factors for high grade toxicity, discontinuation of treatment and impaired survival. Material and methods This retrospective cohort study included all consecutive patients treated with PIPAC-Ox (92 mg/m2) in five centers specialized in the treatment of PC. The procedure was repeated every 6 weeks. Outcomes of interest were Common Terminology Criteria for Adverse Events (CTCAE), symptoms and survival (Kaplan-Meier). Univariate risk factors were included in a multinominal regression model to control for bias. Results Overall, 251 PIPAC-Ox treatments were performed in 101 patients (45 female) having unresectable PC of various origins: 66 colorectal, 15 gastric, 5 ovarian, 3 mesothelioma, 2 pseudomyxoma, 10 other malignancies (biliary, pancreatic, endocrine) respectively. The median PCI was 19 (IQR: 10–28). Postoperative abdominal pain was present in 23 patients. Out of the 9 patients with grade 3 abdominal pain, only 3 needed a change of PIPAC drug. CTCAE 4.0 toxicity grade 4 or higher was encountered in 16(15.9%) patients. The patients had a mean of 2.5 procedures/patient (SD = 1.5). 50 subjects presented with symptom improvement. Conclusions Oxaliplatin-based PIPAC appears to be a safe treatment that offers good symptom control and promising survival for patients with advanced peritoneal disease.

Journal ArticleDOI
TL;DR: The multivariate analysis showed that the risk of mortality was significantly higher for the non-progressive patients who stopped at 6 cycles (standard protocol) than those who continued the treatment, hazard ratio = 1.5 (95% CI 1.2–1.9).
Abstract: Glioblastoma is the most frequent primary malignant brain tumor. In daily practice and at whole country level, oncological care management for glioblastoma patients is not completely known. To describe oncological patterns of care, prognostic factors, and survival for all patients in France with newly-diagnosed and histologically confirmed glioblastoma, and evaluate the impact of extended temozolomide use at the population level. Nationwide population-based cohort study including all patients with newly-diagnosed and histologically confirmed glioblastoma in France in 2008 and followed until 2015. Data from 2053 glioblastoma patients were analyzed (male/female ratio 1.5, median age 64 years). Median overall survival (OS) was 11.2 [95% confidence interval (CI) 10.7–11.9] months. The first-line therapy and corresponding median survival (MS, in months) were: 13% did not receive any oncological treatment (biopsy only) (MS = 1.8, 95% CI 1.6–2.1), 27% received treatment without the combination of radiotherapy (RT)–temozolomide (MS = 5.9, 95% CI 5.5–6.6), 60% received treatment including the initiation of the concomitant phase of RT–temozolomide (MS = 16.4, 95% CI 15.2–17.4) whom 44% of patients initiated the temozolomide adjuvant phase (MS = 18.9, 95% CI 18.0–19.8). Only 22% patients received 6 cycles or more of adjuvant temozolomide (MS = 25.5, 95% CI 24.0–28.3). The multivariate analysis showed that the risk of mortality was significantly higher for the non-progressive patients who stopped at 6 cycles (standard protocol) than those who continued the treatment, hazard ratio = 1.5 (95% CI 1.2–1.9). In non-progressive patients, prolonging the adjuvant temozolomide beyond 6 cycles may improve OS.

Journal ArticleDOI
TL;DR: Experimental and human data support the hypothesis that misfolded proteins characteristic of neurodegenerative diseases may seed and propagate pathology in a prion-like manner and the potential clinical consequences are presented with their clinical consequences.
Abstract: Purpose of reviewThis study, taking the example of Alzheimer's and Parkinson's diseases, presents the experimental and human data that support the hypothesis that Aβ, tau, and α-synuclein may seed and propagate the pathology and consider the potential clinical consequences.Recent findingsAβ aggregat

Journal ArticleDOI
TL;DR: Cognitive deficits in Parkinson's disease (PD) may result from damage in the cortex as well as in the dopaminergic, noradrenergic, and cholinergic inputs to the cortex.
Abstract: Background Cognitive deficits in Parkinson's disease (PD) may result from damage in the cortex as well as in the dopaminergic, noradrenergic, and cholinergic inputs to the cortex. Cholinergic inputs to the cortex mainly originate from the basal forebrain and are clustered in several regions, called Ch1 to Ch4, that project to the hippocampus (Ch1-2), the olfactory bulb (Ch3), and the cortex and amygdala (Ch4). Objective We investigated changes in basal forebrain and their role in cognitive deficits in PD. Methods We studied 52 nondemented patients with PD (Hoehn & Yahr 1-2) and 25 age-matched healthy controls using diffusion and resting state functional MRI. Results PD patients had a loss of structural integrity within the Ch1-2 and Ch3-4 nuclei of the basal forebrain as well as in the fornix. Tractography showed that the probability of anatomical connection was decreased in PD between Ch3-4 and the associative prefrontal cortex, occipital cortex, and peri-insular regions. There was a reduction in functional connectivity between Ch1-2 and the bilateral hippocampi and parahippocampal gyri, the left middle and superior temporal gyri, and the left fusiform gyrus and between Ch3-4 and the right inferior frontal gyrus and the right and left thalamus. In Ch1-2, loss of structural integrity and connectivity correlated with scores at the memory tests, whereas changes in Ch3-4 correlated with scores of global cognition and executive functions. Conclusion This study highlights the association between deficits of different cholinergic nuclei of the basal forebrain and the extent of cognitive impairments in nondemented PD patients. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.

Journal ArticleDOI
TL;DR: It is proposed that all chronic DoC patients should be given the possibility to benefit from NIBS, and that transcranial direct current stimulation (tDCS) should be preferred over repetitive transcrania magnetic stimulation (rTMS), based on the literature and its simple use.
Abstract: Severe brain injury is a common cause of coma. In some cases, despite vigilance improvement, disorders of consciousness (DoC) persist. Several states of impaired consciousness have been defined, according to whether the patient exhibits only reflexive behaviors as in the vegetative state/unresponsive wakefulness syndrome (VS/UWS) or purposeful behaviors distinct from reflexes as in the minimally conscious state (MCS). Recently, this clinical distinction has been enriched by electrophysiological and neuroimaging data resulting from a better understanding of the physiopathology of DoC. However, therapeutic options, especially pharmacological ones, remain very limited. In this context, electroceuticals, a new category of therapeutic agents which act by targeting the neural circuits with electromagnetic stimulations, started to develop in the field of DoC. We performed a systematic review of the studies evaluating therapeutics relying on the direct or indirect electro-magnetic stimulation of the brain in DoC patients. Current evidence seems to support the efficacy of deep brain stimulation (DBS) and non-invasive brain stimulation (NIBS) on consciousness in some of these patients. However, while the latter is non-invasive and well tolerated, the former is associated with potential major side effects. We propose that all chronic DoC patients should be given the possibility to benefit from NIBS, and that transcranial direct current stimulation (tDCS) should be preferred over repetitive transcranial magnetic stimulation (rTMS), based on the literature and its simple use. Surgical techniques less invasive than DBS, such as vagus nerve stimulation (VNS) might represent a good compromise between efficacy and invasiveness but still need to be further investigated.