scispace - formally typeset
Search or ask a question
Institution

Macquarie University

EducationSydney, New South Wales, Australia
About: Macquarie University is a education organization based out in Sydney, New South Wales, Australia. It is known for research contribution in the topics: Population & Context (language use). The organization has 14075 authors who have published 47673 publications receiving 1416184 citations. The organization is also known as: Macquarie uni.


Papers
More filters
Journal ArticleDOI
TL;DR: For instance, this article found that children are quintessentially creatures who mean (i.e., who engage in semiotic processes, with natural language as prototypical), all human learning is essentially semiotic in nature.

890 citations

Journal ArticleDOI
TL;DR: The definitive features of these novel elements are that they include site‐specific integration functions (the Integrase and the insertion site); (ii) that they are able to acquire various gene units and act as an expression cassette by supplying the promoter for the inserted genes.
Abstract: A family of novel mobile DNA elements is described, examples of which are found at several independent locations and encode a variety of antibiotic resistance genes. The complete elements consist of two conserved segments separated by a segment of variable length and sequence which includes inserted antibiotic resistance genes. The conserved segment located 3' to the inserted resistance genes was sequenced from Tn21 and R46, and the sequences are identical over a region of 2026 bases, which includes the sulphonamide resistance gene sull, and two further open reading frames of unknown function. The complete sequences of both the 3' and 5' conserved regions of the DNA element have been determined. A 59-base sequence element, found at the junctions of inserted DNA sequences and the conserved 3' segment, is also present at this location in the R46 sequence. A copy of one half of this 59-base element is found at the end of the sull gene, suggesting that sull, though part of the conserved region, was also originally inserted into an ancestral element by site-specific integration. Inverted or direct terminal repeats or short target site duplications, both of which are characteristics of class I and class II transposons, are not found at the outer boundaries of the elements described here. Furthermore, the conserved regions do not encode any proteins related to known transposition proteins, except the DNA integrase encoded by the 5' conserved region which is implicated in the gene insertion process. Mobilization of this element has not been observed experimentally; mobility is implied from the identification of the element in at least four independent locations, in Tn21, R46 (IncN), R388 (IncW) and Tn1696. The definitive features of these novel elements are (i) that they include site-specific integration functions (the integrase and the insertion site); (ii) that they are able to acquire various gene units and act as an expression cassette by supplying the promoter for the inserted genes. As a consequence of acquiring different inserted genes, the element exists in a variety of forms which differ in the number and nature of the inserted genes. This family of elements appears formally distinct from other known mobile DNA elements and we propose the name DNA integration elements, or integrons.

883 citations

Journal ArticleDOI
Jens Kattge1, Gerhard Bönisch2, Sandra Díaz3, Sandra Lavorel  +751 moreInstitutions (314)
TL;DR: The extent of the trait data compiled in TRY is evaluated and emerging patterns of data coverage and representativeness are analyzed to conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements.
Abstract: Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.

882 citations

Journal ArticleDOI
03 May 2017-Nature
TL;DR: Analysis of whole-genome sequences from cutaneous, acral and mucosal subtypes of melanoma reveals diverse carcinogenic processes across its subtypes, some unrelated to sun exposure, and extends potential involvement of the non-coding genome in its pathogenesis.
Abstract: Melanoma of the skin is a common cancer only in Europeans, whereas it arises in internal body surfaces (mucosal sites) and on the hands and feet (acral sites) in people throughout the world. Here we report analysis of whole-genome sequences from cutaneous, acral and mucosal subtypes of melanoma. The heavily mutated landscape of coding and non-coding mutations in cutaneous melanoma resolved novel signatures of mutagenesis attributable to ultraviolet radiation. However, acral and mucosal melanomas were dominated by structural changes and mutation signatures of unknown aetiology, not previously identified in melanoma. The number of genes affected by recurrent mutations disrupting non-coding sequences was similar to that affected by recurrent mutations to coding sequences. Significantly mutated genes included BRAF, CDKN2A, NRAS and TP53 in cutaneous melanoma, BRAF, NRAS and NF1 in acral melanoma and SF3B1 in mucosal melanoma. Mutations affecting the TERT promoter were the most frequent of all; however, neither they nor ATRX mutations, which correlate with alternative telomere lengthening, were associated with greater telomere length. Most melanomas had potentially actionable mutations, most in components of the mitogen-activated protein kinase and phosphoinositol kinase pathways. The whole-genome mutation landscape of melanoma reveals diverse carcinogenic processes across its subtypes, some unrelated to sun exposure, and extends potential involvement of the non-coding genome in its pathogenesis.

880 citations

Journal ArticleDOI
18 Jul 2008-Science
TL;DR: Moving species outside their historic ranges may mitigate loss of biodiversity in the face of global climate change.
Abstract: Moving species outside their historic ranges may mitigate loss of biodiversity in the face of global climate change.

875 citations


Authors

Showing all 14346 results

NameH-indexPapersCitations
Yang Yang1712644153049
Peter B. Reich159790110377
Nicholas J. Talley158157190197
John R. Hodges14981282709
Thomas J. Smith1401775113919
Andrew G. Clark140823123333
Joss Bland-Hawthorn136111477593
John F. Thompson132142095894
Xin Wang121150364930
William L. Griffin11786261494
Richard Shine115109656544
Ian T. Paulsen11235469460
Jianjun Liu112104071032
Douglas R. MacFarlane11086454236
Richard A. Bryant10976943971
Network Information
Related Institutions (5)
Australian National University
109.2K papers, 4.3M citations

96% related

University of Queensland
155.7K papers, 5.7M citations

96% related

University of Sydney
187.3K papers, 6.1M citations

95% related

University of Melbourne
174.8K papers, 6.3M citations

95% related

University of New South Wales
153.6K papers, 4.8M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023110
2022463
20214,106
20204,009
20193,549
20183,119