scispace - formally typeset
Search or ask a question
Institution

The Chinese University of Hong Kong

EducationHong Kong, China
About: The Chinese University of Hong Kong is a education organization based out in Hong Kong, China. It is known for research contribution in the topics: Population & Computer science. The organization has 43411 authors who have published 93672 publications receiving 3066651 citations.
Topics: Population, Computer science, Cancer, Medicine, China


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors considered a multi-user MEC network powered by the WPT, where each energy-harvesting WD follows a binary computation offloading policy, i.e., the data set of a task has to be executed as a whole either locally or remotely at the MEC server via task offloading.
Abstract: Finite battery lifetime and low computing capability of size-constrained wireless devices (WDs) have been longstanding performance limitations of many low-power wireless networks, e.g., wireless sensor networks and Internet of Things. The recent development of radio frequency-based wireless power transfer (WPT) and mobile edge computing (MEC) technologies provide a promising solution to fully remove these limitations so as to achieve sustainable device operation and enhanced computational capability. In this paper, we consider a multi-user MEC network powered by the WPT, where each energy-harvesting WD follows a binary computation offloading policy, i.e., the data set of a task has to be executed as a whole either locally or remotely at the MEC server via task offloading. In particular, we are interested in maximizing the (weighted) sum computation rate of all the WDs in the network by jointly optimizing the individual computing mode selection (i.e., local computing or offloading) and the system transmission time allocation (on WPT and task offloading). The major difficulty lies in the combinatorial nature of the multi-user computing mode selection and its strong coupling with the transmission time allocation. To tackle this problem, we first consider a decoupled optimization, where we assume that the mode selection is given and propose a simple bi-section search algorithm to obtain the conditional optimal time allocation. On top of that, a coordinate descent method is devised to optimize the mode selection. The method is simple in implementation but may suffer from high computational complexity in a large-size network. To address this problem, we further propose a joint optimization method based on the alternating direction method of multipliers (ADMM) decomposition technique, which enjoys a much slower increase of computational complexity as the networks size increases. Extensive simulations show that both the proposed methods can efficiently achieve a near-optimal performance under various network setups, and significantly outperform the other representative benchmark methods considered.

563 citations

Journal ArticleDOI
TL;DR: Stalder et al. as discussed by the authors proposed a new method based on the Young-Laplace equation for measuring contact angles and surface tension, which can be used to measure axisymmetric sessile drops.

563 citations

Journal ArticleDOI
TL;DR: Except photosynthetic microalgae, POEA accounted for more than 86% of Roundup toxicity and the toxicity contribution of POEA was shown to be species-dependent, mainly due to its high acidity.

562 citations

Journal ArticleDOI
TL;DR: Temporal Segment Networks (TSN) as discussed by the authors is proposed to model long-range temporal structure with a new segment-based sampling and aggregation scheme, which enables the TSN framework to efficiently learn action models by using the whole video.
Abstract: We present a general and flexible video-level framework for learning action models in videos. This method, called temporal segment network (TSN), aims to model long-range temporal structure with a new segment-based sampling and aggregation scheme. This unique design enables the TSN framework to efficiently learn action models by using the whole video. The learned models could be easily deployed for action recognition in both trimmed and untrimmed videos with simple average pooling and multi-scale temporal window integration, respectively. We also study a series of good practices for the implementation of the TSN framework given limited training samples. Our approach obtains the state-the-of-art performance on five challenging action recognition benchmarks: HMDB51 (71.0 percent), UCF101 (94.9 percent), THUMOS14 (80.1 percent), ActivityNet v1.2 (89.6 percent), and Kinetics400 (75.7 percent). In addition, using the proposed RGB difference as a simple motion representation, our method can still achieve competitive accuracy on UCF101 (91.0 percent) while running at 340 FPS. Furthermore, based on the proposed TSN framework, we won the video classification track at the ActivityNet challenge 2016 among 24 teams.

562 citations

Proceedings Article
22 Jul 2012
TL;DR: This paper is the first to fuse MF with geographical and social influence for POI recommendation in LBSNs via modeling the probability of a user's check-in on a location as a Multicenter Gaussian Model (MGM) and fuse the geographical influence into a generalized matrix factorization framework.
Abstract: Recently, location-based social networks (LBSNs), such as Gowalla, Foursquare, Facebook, and Brightkite, etc, have attracted millions of users to share their social friendship and their locations via check-ins The available check-in information makes it possible to mine users' preference on locations and to provide favorite recommendations Personalized Point-of-interest (POI) recommendation is a significant task in LBSNs since it can help targeted users explore their surroundings as well as help third-party developers to provide personalized services To solve this task, matrix factorization is a promising tool due to its success in recommender systems However, previously proposed matrix factorization (MF) methods do not explore geographical influence, eg, multi-center check-in property, which yields suboptimal solutions for the recommendation In this paper, to the best of our knowledge, we are the first to fuse MF with geographical and social influence for POI recommendation in LBSNs We first capture the geographical influence via modeling the probability of a user's check-in on a location as a Multicenter Gaussian Model (MGM) Next, we include social information and fuse the geographical influence into a generalized matrix factorization framework Our solution to POI recommendation is efficient and scales linearly with the number of observations Finally, we conduct thorough experiments on a large-scale real-world LBSNs dataset and demonstrate that the fused matrix factorization framework with MGM utilizes the distance information sufficiently and outperforms other state-of-the-art methods significantly

561 citations


Authors

Showing all 43993 results

NameH-indexPapersCitations
Michael Marmot1931147170338
Jing Wang1844046202769
Jiaguo Yu178730113300
Yang Yang1712644153049
Mark Gerstein168751149578
Gang Chen1673372149819
Jun Wang1661093141621
Jean Louis Vincent1611667163721
Wei Zheng1511929120209
Rui Zhang1512625107917
Ben Zhong Tang1492007116294
Kypros H. Nicolaides147130287091
Thomas S. Huang1461299101564
Galen D. Stucky144958101796
Joseph J.Y. Sung142124092035
Network Information
Related Institutions (5)
University of Toronto
294.9K papers, 13.5M citations

92% related

University of California, San Diego
204.5K papers, 12.3M citations

92% related

University of Pittsburgh
201K papers, 9.6M citations

92% related

University of Michigan
342.3K papers, 17.6M citations

92% related

University of Minnesota
257.9K papers, 11.9M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023212
2022904
20217,888
20207,245
20195,968
20185,372