scispace - formally typeset
Search or ask a question
Institution

The Chinese University of Hong Kong

EducationHong Kong, China
About: The Chinese University of Hong Kong is a education organization based out in Hong Kong, China. It is known for research contribution in the topics: Population & Computer science. The organization has 43411 authors who have published 93672 publications receiving 3066651 citations.
Topics: Population, Computer science, Cancer, Medicine, China


Papers
More filters
Journal ArticleDOI
TL;DR: Massively parallel plasma DNA sequencing represents a new approach that is potentially applicable to all pregnancies for the noninvasive prenatal diagnosis of fetal chromosomal aneuploidies.
Abstract: Chromosomal aneuploidy is the major reason why couples opt for prenatal diagnosis. Current methods for definitive diagnosis rely on invasive procedures, such as chorionic villus sampling and amniocentesis, and are associated with a risk of fetal miscarriage. Fetal DNA has been found in maternal plasma but exists as a minor fraction among a high background of maternal DNA. Hence, quantitative perturbations caused by an aneuploid chromosome in the fetal genome to the overall representation of sequences from that chromosome in maternal plasma would be small. Even with highly precise single molecule counting methods such as digital PCR, a large number of DNA molecules and hence maternal plasma volume would need to be analyzed to achieve the necessary analytical precision. Here we reasoned that instead of using approaches that target specific gene loci, the use of a locus-independent method would greatly increase the number of target molecules from the aneuploid chromosome that could be analyzed within the same fixed volume of plasma. Hence, we used massively parallel genomic sequencing to quantify maternal plasma DNA sequences for the noninvasive prenatal detection of fetal trisomy 21. Twenty-eight first and second trimester maternal plasma samples were tested. All 14 trisomy 21 fetuses and 14 euploid fetuses were correctly identified. Massively parallel plasma DNA sequencing represents a new approach that is potentially applicable to all pregnancies for the noninvasive prenatal diagnosis of fetal chromosomal aneuploidies.

986 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: This paper proposes a multi-context deep learning framework for salient object detection that employs deep Convolutional Neural Networks to model saliency of objects in images and investigates different pre-training strategies to provide a better initialization for training the deep neural networks.
Abstract: Low-level saliency cues or priors do not produce good enough saliency detection results especially when the salient object presents in a low-contrast background with confusing visual appearance. This issue raises a serious problem for conventional approaches. In this paper, we tackle this problem by proposing a multi-context deep learning framework for salient object detection. We employ deep Convolutional Neural Networks to model saliency of objects in images. Global context and local context are both taken into account, and are jointly modeled in a unified multi-context deep learning framework. To provide a better initialization for training the deep neural networks, we investigate different pre-training strategies, and a task-specific pre-training scheme is designed to make the multi-context modeling suited for saliency detection. Furthermore, recently proposed contemporary deep models in the ImageNet Image Classification Challenge are tested, and their effectiveness in saliency detection are investigated. Our approach is extensively evaluated on five public datasets, and experimental results show significant and consistent improvements over the state-of-the-art methods.

983 citations

Journal ArticleDOI
TL;DR: This paper proposes a mechanism that combines data deduplication with dynamic data operations in the privacy preserving public auditing for secure cloud storage and shows that the proposed mechanism is highly efficient and provably secure.
Abstract: Using cloud storage, users can remotely store their data and enjoy the on-demand high-quality applications and services from a shared pool of configurable computing resources, without the burden of local data storage and maintenance. However, the fact that users no longer have physical possession of the outsourced data makes the data integrity protection in cloud computing a formidable task, especially for users with constrained computing resources. Moreover, users should be able to just use the cloud storage as if it is local, without worrying about the need to verify its integrity. Thus, enabling public auditability for cloud storage is of critical importance so that users can resort to a third-party auditor (TPA) to check the integrity of outsourced data and be worry free. To securely introduce an effective TPA, the auditing process should bring in no new vulnerabilities toward user data privacy, and introduce no additional online burden to user. In this paper, we propose a secure cloud storage system supporting privacy-preserving public auditing. We further extend our result to enable the TPA to perform audits for multiple users simultaneously and efficiently. Extensive security and performance analysis show the proposed schemes are provably secure and highly efficient. Our preliminary experiment conducted on Amazon EC2 instance further demonstrates the fast performance of the design.

982 citations

Journal ArticleDOI
TL;DR: Replication in Sars-CoV-infected macaques of pneumonia similar to that in human beings with SARS, combined with the high prevalence of SARS- CoV infection in SARS patients, fulfill the criteria required to prove that SARS -CoV is the primary cause of Sars.

981 citations

Journal ArticleDOI
TL;DR: In this article, a continuous-time mean-variance portfolio selection problem is formulated as a bicriteria optimization problem, where the objective is to maximize the expected terminal return and minimize the variance of the terminal wealth.
Abstract: This paper is concerned with a continuous-time mean-variance portfolio selection model that is formulated as a bicriteria optimization problem. The objective is to maximize the expected terminal return and minimize the variance of the terminal wealth. By putting weights on the two criteria one obtains a single objective stochastic control problem which is however not in the standard form due to the variance term involved. It is shown that this nonstandard problem can be ``embedded'' into a class of auxiliary stochastic linear-quadratic (LQ) problems. The stochastic LQ control model proves to be an appropriate and effective framework to study the mean-variance problem in light of the recent development on general stochastic LQ problems with indefinite control weighting matrices. This gives rise to the efficient frontier in a closed form for the original portfolio selection problem.

979 citations


Authors

Showing all 43993 results

NameH-indexPapersCitations
Michael Marmot1931147170338
Jing Wang1844046202769
Jiaguo Yu178730113300
Yang Yang1712644153049
Mark Gerstein168751149578
Gang Chen1673372149819
Jun Wang1661093141621
Jean Louis Vincent1611667163721
Wei Zheng1511929120209
Rui Zhang1512625107917
Ben Zhong Tang1492007116294
Kypros H. Nicolaides147130287091
Thomas S. Huang1461299101564
Galen D. Stucky144958101796
Joseph J.Y. Sung142124092035
Network Information
Related Institutions (5)
University of Toronto
294.9K papers, 13.5M citations

92% related

University of California, San Diego
204.5K papers, 12.3M citations

92% related

University of Pittsburgh
201K papers, 9.6M citations

92% related

University of Michigan
342.3K papers, 17.6M citations

92% related

University of Minnesota
257.9K papers, 11.9M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023212
2022904
20217,888
20207,245
20195,968
20185,372