scispace - formally typeset
Search or ask a question
Institution

University at Buffalo

EducationBuffalo, New York, United States
About: University at Buffalo is a education organization based out in Buffalo, New York, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 33773 authors who have published 63840 publications receiving 2278954 citations. The organization is also known as: UB & State University of New York at Buffalo.


Papers
More filters
Journal ArticleDOI
TL;DR: The work presented here details the Avogadro library, which is a framework providing a code library and application programming interface (API) with three-dimensional visualization capabilities; and has direct applications to research and education in the fields of chemistry, physics, materials science, and biology.
Abstract: The Avogadro project has developed an advanced molecule editor and visualizer designed for cross-platform use in computational chemistry, molecular modeling, bioinformatics, materials science, and related areas. It offers flexible, high quality rendering, and a powerful plugin architecture. Typical uses include building molecular structures, formatting input files, and analyzing output of a wide variety of computational chemistry packages. By using the CML file format as its native document type, Avogadro seeks to enhance the semantic accessibility of chemical data types. The work presented here details the Avogadro library, which is a framework providing a code library and application programming interface (API) with three-dimensional visualization capabilities; and has direct applications to research and education in the fields of chemistry, physics, materials science, and biology. The Avogadro application provides a rich graphical interface using dynamically loaded plugins through the library itself. The application and library can each be extended by implementing a plugin module in C++ or Python to explore different visualization techniques, build/manipulate molecular structures, and interact with other programs. We describe some example extensions, one which uses a genetic algorithm to find stable crystal structures, and one which interfaces with the PackMol program to create packed, solvated structures for molecular dynamics simulations. The 1.0 release series of Avogadro is the main focus of the results discussed here. Avogadro offers a semantic chemical builder and platform for visualization and analysis. For users, it offers an easy-to-use builder, integrated support for downloading from common databases such as PubChem and the Protein Data Bank, extracting chemical data from a wide variety of formats, including computational chemistry output, and native, semantic support for the CML file format. For developers, it can be easily extended via a powerful plugin mechanism to support new features in organic chemistry, inorganic complexes, drug design, materials, biomolecules, and simulations. Avogadro is freely available under an open-source license from http://avogadro.openmolecules.net .

5,816 citations

Journal ArticleDOI
TL;DR: Among patients with metastatic non-small-cell lung cancer, early palliative care led to significant improvements in both quality of life and mood and, as compared with patients receiving standard care, patients received less aggressive care at the end of life but longer survival.
Abstract: Background Patients with metastatic non–small-cell lung cancer have a substantial symptom burden and may receive aggressive care at the end of life. We examined the effect of introducing palliative care early after diagnosis on patient-reported outcomes and end-of-life care among ambulatory patients with newly diagnosed disease. Methods We randomly assigned patients with newly diagnosed metastatic non–small-cell lung cancer to receive either early palliative care integrated with standard oncologic care or standard oncologic care alone. Quality of life and mood were assessed at baseline and at 12 weeks with the use of the Functional Assessment of Cancer Therapy–Lung (FACT-L) scale and the Hospital Anxiety and Depression Scale, respectively. The primary outcome was the change in the quality of life at 12 weeks. Data on end-of-life care were collected from electronic medical records. Results Of the 151 patients who underwent randomization, 27 died by 12 weeks and 107 (86% of the remaining patients) completed assessments. Patients assigned to early palliative care had a better quality of life than did patients assigned to standard care (mean score on the FACT-L scale [in which scores range from 0 to 136, with higher scores indicating better quality of life], 98.0 vs. 91.5; P = 0.03). In addition, fewer patients in the palliative care group than in the standard care group had depressive symptoms (16% vs. 38%, P = 0.01). Despite the fact that fewer patients in the early palliative care group than in the standard care group received aggressive end-of-life care (33% vs. 54%, P = 0.05), median survival was longer among patients receiving early palliative care (11.6 months vs. 8.9 months, P = 0.02). Conclusions Among patients with metastatic non–small-cell lung cancer, early palliative care led to significant improvements in both quality of life and mood. As compared with patients receiving standard care, patients receiving early palliative care had less aggressive care at the end of life but longer survival. (Funded by an American Society of Clinical Oncology Career Development Award and philanthropic gifts; ClinicalTrials.gov number, NCT01038271.)

5,450 citations

Journal ArticleDOI
TL;DR: The Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) at CERN as mentioned in this paper was designed to study proton-proton (and lead-lead) collisions at a centre-of-mass energy of 14 TeV (5.5 TeV nucleon-nucleon) and at luminosities up to 10(34)cm(-2)s(-1)
Abstract: The Compact Muon Solenoid (CMS) detector is described. The detector operates at the Large Hadron Collider (LHC) at CERN. It was conceived to study proton-proton (and lead-lead) collisions at a centre-of-mass energy of 14 TeV (5.5 TeV nucleon-nucleon) and at luminosities up to 10(34)cm(-2)s(-1) (10(27)cm(-2)s(-1)). At the core of the CMS detector sits a high-magnetic-field and large-bore superconducting solenoid surrounding an all-silicon pixel and strip tracker, a lead-tungstate scintillating-crystals electromagnetic calorimeter, and a brass-scintillator sampling hadron calorimeter. The iron yoke of the flux-return is instrumented with four stations of muon detectors covering most of the 4 pi solid angle. Forward sampling calorimeters extend the pseudo-rapidity coverage to high values (vertical bar eta vertical bar <= 5) assuring very good hermeticity. The overall dimensions of the CMS detector are a length of 21.6 m, a diameter of 14.6 m and a total weight of 12500 t.

5,193 citations

Journal ArticleDOI
TL;DR: These revised definitions of invasive fungal disease are intended to advance clinical and epidemiological research and may serve as a useful model for defining other infections in high-risk patients.
Abstract: BACKGROUND: Invasive fungal diseases are important causes of morbidity and mortality. Clarity and uniformity in defining these infections are important factors in improving the quality of clinical studies. A standard set of definitions strengthens the consistency and reproducibility of such studies. METHODS: After the introduction of the original European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group definitions, advances in diagnostic technology and the recognition of areas in need of improvement led to a revision of this document. The revision process started with a meeting of participants in 2003, to decide on the process and to draft the proposal. This was followed by several rounds of consultation until a final draft was approved in 2005. This was made available for 6 months to allow public comment, and then the manuscript was prepared and approved. RESULTS: The revised definitions retain the original classifications of "proven," "probable," and "possible" invasive fungal disease, but the definition of "probable" has been expanded, whereas the scope of the category "possible" has been diminished. The category of proven invasive fungal disease can apply to any patient, regardless of whether the patient is immunocompromised, whereas the probable and possible categories are proposed for immunocompromised patients only. CONCLUSIONS: These revised definitions of invasive fungal disease are intended to advance clinical and epidemiological research and may serve as a useful model for defining other infections in high-risk patients.

4,389 citations

Journal ArticleDOI
TL;DR: These guidelines are presented for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.

4,316 citations


Authors

Showing all 34002 results

NameH-indexPapersCitations
Rakesh K. Jain2001467177727
Julie E. Buring186950132967
Anil K. Jain1831016192151
Donald G. Truhlar1651518157965
Roger A. Nicoll16539784121
Bruce L. Miller1631153115975
David R. Holmes1611624114187
Suvadeep Bose154960129071
Ashok Kumar1515654164086
Philip S. Yu1481914107374
Hugh A. Sampson14781676492
Aaron Dominguez1471968113224
Gregory R Snow1471704115677
J. S. Keller14498198249
C. Ronald Kahn14452579809
Network Information
Related Institutions (5)
University of Minnesota
257.9K papers, 11.9M citations

97% related

University of Washington
305.5K papers, 17.7M citations

96% related

University of Michigan
342.3K papers, 17.6M citations

96% related

Columbia University
224K papers, 12.8M citations

96% related

University of Pennsylvania
257.6K papers, 14.1M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202388
2022363
20212,772
20202,695
20192,527
20182,500