scispace - formally typeset
Search or ask a question

Showing papers by "University of Mons published in 2016"


Journal ArticleDOI
Vardan Khachatryan1, Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam  +2283 moreInstitutions (141)
TL;DR: Combined fits to CMS UE proton–proton data at 7TeV and to UEProton–antiproton data from the CDF experiment at lower s, are used to study the UE models and constrain their parameters, providing thereby improved predictions for proton-proton collisions at 13.
Abstract: New sets of parameters ("tunes") for the underlying-event (UE) modeling of the PYTHIA8, PYTHIA6 and HERWIG++ Monte Carlo event generators are constructed using different parton distribution functions. Combined fits to CMS UE data at sqrt(s) = 7 TeV and to UE data from the CDF experiment at lower sqrt(s), are used to study the UE models and constrain their parameters, providing thereby improved predictions for proton-proton collisions at 13 TeV. In addition, it is investigated whether the values of the parameters obtained from fits to UE observables are consistent with the values determined from fitting observables sensitive to double-parton scattering processes. Finally, comparisons of the UE tunes to "minimum bias" (MB) events, multijet, and Drell-Yan (q q-bar to Z / gamma* to lepton-antilepton + jets) observables at 7 and 8 TeV are presented, as well as predictions of MB and UE observables at 13 TeV.

686 citations


Journal ArticleDOI
TL;DR: This review highlights recent developments, current results and trends in the field of composites based on PLA, presents the main advances in PLA properties and reports selected results in relation to the preparation and characterization of the most representative PLA composites.

603 citations


Journal ArticleDOI
M. G. Aartsen1, K. Abraham2, Markus Ackermann, Jenni Adams3  +313 moreInstitutions (49)
TL;DR: In this paper, an isotropic, unbroken power-law flux with a normalization at 100 TeV neutrino energy of (0.90 -0.27 +0.30) × 10-18 Gev-1 cm-2 s-1 sr-1 and a hard spectral index of γ = 2.13 ± 0.13.
Abstract: The IceCube Collaboration has previously discovered a high-energy astrophysical neutrino flux using neutrino events with interaction vertices contained within the instrumented volume of the IceCube detector. We present a complementary measurement using charged current muon neutrino events where the interaction vertex can be outside this volume. As a consequence of the large muon range the effective area is significantly larger but the field of view is restricted to the Northern Hemisphere. IceCube data from 2009 through 2015 have been analyzed using a likelihood approach based on the reconstructed muon energy and zenith angle. At the highest neutrino energies between 194 TeV and 7.8 PeV a significant astrophysical contribution is observed, excluding a purely atmospheric origin of these events at 5.6s significance. The data are well described by an isotropic, unbroken power-law flux with a normalization at 100 TeV neutrino energy of (0.90 -0.27 +0.30) × 10-18 Gev-1 cm-2 s-1 sr-1and a hard spectral index of γ = 2.13 ± 0.13. The observed spectrum is harder in comparison to previous IceCube analyses with lower energy thresholds which may indicate a break in the astrophysical neutrino spectrum of unknown origin. The highest-energy event observed has a reconstructed muon energy of (4.5 ± 1.2) PeV which implies a probability of less than 0.005% for this event to be of atmospheric origin. Analyzing the arrival directions of all events with reconstructed muon energies above 200 TeV no correlation with known γ-ray sources was found. Using the high statistics of atmospheric neutrinos we report the current best constraints on a prompt atmospheric muon neutrino flux originating from charmed meson decays which is below 1.06 in units of the flux normalization of the model in Enberg et al.

503 citations


Journal ArticleDOI
TL;DR: Interestingly, using only one predictor (temperature) the LDA model was able to estimate the occupancy with accuracies of 85% and 83% in the two testing sets.

455 citations


Journal ArticleDOI
TL;DR: In this article, temperature resolved UV-vis absorption and spectral photocurrent response measurements of MAPbI3 thin films and solar cells, together with ab initio simulations, were used to investigate the changes in material properties occurring across the tetragonal to cubic phase transition.
Abstract: We report temperature resolved UV-vis absorption and spectral photocurrent response measurements of MAPbI3 thin films and solar cells, together with ab initio simulations, to investigate the changes in material properties occurring across the tetragonal to cubic phase transition. We find that the MAPbI3 band-gap does not abruptly change when exceeding the tetragonal to cubic transition temperature, but it rather monotonically blue-shifts following the same temperature evolution observed within the tetragonal phase. Car–Parrinello molecular dynamics simulations demonstrate that the high temperature phase corresponds on average to the expected symmetric cubic structure assigned from XRD measurements, but that the system strongly deviates from such a structure in the sub-picosecond time scale. Thus, on the time scale of electronic transitions, the material seldom experiences a cubic environment, rather an increasingly distorted tetragonal one. This result explains the absence of dramatic changes in the optical of MAPbI3 across the explored temperature range of 270–420 K, which could have important consequences for the practical uptake of perovskite solar cells.

419 citations


Journal ArticleDOI
TL;DR: Structural and mechanical characterization shows "brick-and-mortar" structures, akin to nacre, with interesting combinations of strength, stiffness, and work of fracture, which provide a pathway to making strong and tough lightweight materials.
Abstract: Using a bidirectional freezing technique, combined with uniaxial pressing and in situ polymerization, "nacre-mimetic" hydroxyapatite/poly(methyl methacrylate) (PMMA) composites are developed by processing large-scale aligned lamellar ceramic scaffolds. Structural and mechanical characterization shows "brick-and-mortar" structures, akin to nacre, with interesting combinations of strength, stiffness, and work of fracture, which provide a pathway to making strong and tough lightweight materials.

299 citations


Journal ArticleDOI
TL;DR: In this paper, a brief review of the recent trends in the field of shape-memory polymers is presented with particular focus on their structure, shapememory effects and working mechanism, and a special attention is paid to smart multi-responsive and multi-functional SMP materials as emerging technological class.

238 citations


Journal ArticleDOI
M. G. Aartsen1, K. Abraham2, Markus Ackermann, Jenni Adams3  +295 moreInstitutions (47)
TL;DR: New exclusion limits are placed on the parameter space of the 3+1 model, in which muon antineutrinos experience a strong Mikheyev-Smirnov-Wolfenstein-resonant oscillation.
Abstract: The IceCube neutrino telescope at the South Pole has measured the atmospheric muon neutrino spectrum as a function of zenith angle and energy in the approximate 320 GeV to 20 TeV range, to search for the oscillation signatures of light sterile neutrinos. No evidence for anomalous ν_{μ} or ν[over ¯]_{μ} disappearance is observed in either of two independently developed analyses, each using one year of atmospheric neutrino data. New exclusion limits are placed on the parameter space of the 3+1 model, in which muon antineutrinos experience a strong Mikheyev-Smirnov-Wolfenstein-resonant oscillation. The exclusion limits extend to sin^{2}2θ_{24}≤0.02 at Δm^{2}∼0.3 eV^{2} at the 90% confidence level. The allowed region from global analysis of appearance experiments, including LSND and MiniBooNE, is excluded at approximately the 99% confidence level for the global best-fit value of |U_{e4}|^{2}.

229 citations


Book ChapterDOI
01 Feb 2016
TL;DR: An up-to-date survey of the mathematical foundations of MACBETH (Measuring Attractiveness by a Categorical Based Evaluation Technique) is presented.
Abstract: MACBETH (Measuring Attractiveness by a Categorical Based Evaluation Technique) is a multicriteria decision analysis approach that requires only qualitative judgements about differences of value to help an individual or a group quantify the relative attractiveness of options. We present an up-to-date survey of the mathematical foundations of MACBETH. Reference is also made to real-world applications and an extensive bibliography, spanning back to the early 1990’s, is provided.

181 citations


Journal ArticleDOI
M. G. Aartsen1, K. Abraham2, Markus Ackermann, Jenni Adams3  +324 moreInstitutions (50)
TL;DR: In this paper, an improved event-level likelihood formalism for including neutrino telescope data in global fits to new physics is presented, along with the public release of the 79-string IceCube data, as well as an associated computer code for applying the new likelihood to arbitrary dark matter models.
Abstract: We present an improved event-level likelihood formalism for including neutrino telescope data in global fits to new physics. We derive limits on spin-dependent dark matter-proton scattering by employing the new formalism in a re-analysis of data from the 79-string IceCube search for dark matter annihilation in the Sun, including explicit energy information for each event. The new analysis excludes a number of models in the weak-scale minimal supersymmetric standard model (MSSM) for the first time. This work is accompanied by the public release of the 79-string IceCube data, as well as an associated computer code for applying the new likelihood to arbitrary dark matter models.

180 citations


Journal ArticleDOI
TL;DR: Analysis of a collection of technical ground-borne noise and vibration reports, detailing commercial vibration assessments undertaken at 1604 railway track sections, in 9 countries across the world, finds that railway vibration is a growing global concern, and as such, assessments have become more prevalent.

Journal ArticleDOI
TL;DR: The underpinning of this work is a grating architecture—a gold-coated highly tilted Bragg grating—that excites a spectral comb of narrowband-cladding modes with effective indices near 1.0 and below that opens research directions for highly sensitive plasmonic sensing in gas.
Abstract: Surface plasmon polaritons (SPP) can be excited on metal-coated optical fibres, enabling the accurate monitoring of refractive index changes. Configurations reported so far mainly operate in liquids but not in air because of a mismatch between permittivities of guided light modes and the surrounding medium. Here we demonstrate a plasmonic optical fibre platform that overcomes this limitation. The underpinning of our work is a grating architecture—a gold-coated highly tilted Bragg grating—that excites a spectral comb of narrowband-cladding modes with effective indices near 1.0 and below. Using conventional spectral interrogation, we measure shifts of the SPP-matched resonances in response to static atmospheric pressure changes. A dynamic experiment conducted using a laser lined-up with an SPP-matched resonance demonstrates the ability to detect an acoustic wave with a resolution of 10−8 refractive index unit (RIU). We believe that this configuration opens research directions for highly sensitive plasmonic sensing in gas. Fibre sensors are key to many minimally-invasive detection techniques but, owing to an index mismatch, they are often limited to aqueous environments. Here, Caucheteur et al. develop a high-resolution fibre gas sensor with a tilted in-fibre grating that allows coupling to higher-order plasmon modes.

Journal ArticleDOI
TL;DR: It is discovered that animal species that interact with a low diversity of plant species have narrow climatic niches and are most vulnerable to climate change.
Abstract: Impacts of climate change on individual species are increasingly well documented, but we lack understanding of how these effects propagate through ecological communities. Here we combine species distribution models with ecological network analyses to test potential impacts of climate change on >700 plant and animal species in pollination and seed-dispersal networks from central Europe. We discover that animal species that interact with a low diversity of plant species have narrow climatic niches and are most vulnerable to climate change. In contrast, biotic specialization of plants is not related to climatic niche breadth and vulnerability. A simulation model incorporating different scenarios of species coextinction and capacities for partner switches shows that projected plant extinctions under climate change are more likely to trigger animal coextinctions than vice versa. This result demonstrates that impacts of climate change on biodiversity can be amplified via extinction cascades from plants to animals in ecological networks.

Journal ArticleDOI
M. G. Aartsen1, K. Abraham2, Markus Ackermann, Jenni Adams3  +311 moreInstitutions (48)
TL;DR: In this paper, the authors report constraints on the sources of ultra-high-energy cosmic rays (UHECRs) above 10^{9} GeV, based on an analysis of seven years of IceCube data.
Abstract: We report constraints on the sources of ultrahigh-energy cosmic rays (UHECRs) above 10^{9} GeV, based on an analysis of seven years of IceCube data. This analysis efficiently selects very high- energy neutrino-induced events which have deposited energies from 5×10^{5} GeV to above 10^{11} GeV. Two neutrino-induced events with an estimated deposited energy of (2.6±0.3)×10^{6} GeV, the highest neutrino energy observed so far, and (7.7±2.0)×10^{5} GeV were detected. The atmospheric background-only hypothesis of detecting these events is rejected at 3.6σ. The hypothesis that the observed events are of cosmogenic origin is also rejected at >99% CL because of the limited deposited energy and the nonobservation of events at higher energy, while their observation is consistent with an astrophysical origin. Our limits on cosmogenic neutrino fluxes disfavor the UHECR sources having a cosmological evolution stronger than the star formation rate, e.g., active galactic nuclei and γ-ray bursts, assuming proton-dominated UHECRs. Constraints on UHECR sources including mixed and heavy UHECR compositions are obtained for models of neutrino production within UHECR sources. Our limit disfavors a significant part of parameter space for active galactic nuclei and new-born pulsar models. These limits on the ultrahigh-energy neutrino flux models are the most stringent to date.

Journal ArticleDOI
Vardan Khachatryan1, Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam2  +2249 moreInstitutions (180)
TL;DR: In this article, a search for narrow resonances in proton-proton collisions at square root(s) = 13 TeV is presented, and the invariant mass distribution of the two leading jets is measured with the CMS detector using a data set corresponding to an integrated luminosity of 2.4 inverse femtobarns.
Abstract: A search for narrow resonances in proton-proton collisions at sqrt(s) = 13 TeV is presented. The invariant mass distribution of the two leading jets is measured with the CMS detector using a data set corresponding to an integrated luminosity of 2.4 inverse femtobarns. The highest observed dijet mass is 6.1 TeV. The distribution is smooth and no evidence for resonant particles is observed. Upper limits at 95% confidence level are set on the production cross section for narrow resonances with masses above 1.5 TeV. When interpreted in the context of specific models, the limits exclude string resonances with masses below 7.0 TeV, scalar diquarks below 6.0 TeV, axigluons and colorons below 5.1 TeV, excited quarks below 5.0 TeV, color-octet scalars below 3.1 TeV, and W' bosons below 2.6 TeV. These results significantly extend previously published limits.

Journal ArticleDOI
02 Jun 2016-Nature
TL;DR: The dating of annular constructions made of broken stalagmites found deep in Bruniquel Cave in southwest France gives a reliable and replicated age of 176.5 thousand years (±2.1 thousand years), making these edifices among the oldest known well-dated constructionsmade by humans.
Abstract: Very little is known about Neanderthal cultures, particularly early ones. Other than lithic implements and exceptional bone tools, very few artefacts have been preserved. While those that do remain include red and black pigments and burial sites, these indications of modernity are extremely sparse and few have been precisely dated, thus greatly limiting our knowledge of these predecessors of modern humans. Here we report the dating of annular constructions made of broken stalagmites found deep in Bruniquel Cave in southwest France. The regular geometry of the stalagmite circles, the arrangement of broken stalagmites and several traces of fire demonstrate the anthropogenic origin of these constructions. Uranium-series dating of stalagmite regrowths on the structures and on burnt bone, combined with the dating of stalagmite tips in the structures, give a reliable and replicated age of 176.5 thousand years (±2.1 thousand years), making these edifices among the oldest known well-dated constructions made by humans. Their presence at 336 metres from the entrance of the cave indicates that humans from this period had already mastered the underground environment, which can be considered a major step in human modernity.

Journal ArticleDOI
TL;DR: The goal of this review is to illustrate the increasing application of plasma-based technologies for tuning the surface properties of polymers, principally through free-radical chemistry.
Abstract: With the advances in science and engineering in the second part of the 20th century, emerging plasma-based technologies continuously find increasing applications in the domain of polymer chemistry, among others. Plasma technologies are predominantly used in two different ways: for the treatment of polymer substrates by a reactive or inert gas aiming at a specific surface functionalization or for the synthesis of a plasma polymer with a unique set of properties from an organic or mixed organic–inorganic precursor. Plasma polymer films (PPFs), often deposited by plasma-enhanced chemical vapor deposition (PECVD), currently attract a great deal of attention. Such films are widely used in various fields for the coating of solid substrates, including membranes, semiconductors, metals, textiles, and polymers, because of a combination of interesting properties such as excellent adhesion, highly cross-linked structures, and the possibility of tuning properties by simply varying the precursor and/or the synthesis p...

Journal ArticleDOI
M. G. Aartsen1, K. Abraham2, Markus Ackermann, Jenni Adams3  +321 moreInstitutions (47)
TL;DR: In this article, the results and methodology of a search for neutrinos produced in the decay of charged pions created in interactions between protons and gamma-rays during the prompt emission of 807 gamma-ray bursts (GRBs) over the entire sky were presented.
Abstract: We present the results and methodology of a search for neutrinos produced in the decay of charged pions created in interactions between protons and gamma-rays during the prompt emission of 807 gamma-ray bursts (GRBs) over the entire sky. This three-year search is the first in IceCube for shower-like Cherenkov light patterns from electron, muon, and tau neutrinos correlated with GRBs. We detect five low-significance events correlated with five GRBs. These events are consistent with the background expectation from atmospheric muons and neutrinos. The results of this search in combination with those of IceCube's four years of searches for track-like Cherenkov light patterns from muon neutrinos correlated with Northern-Hemisphere GRBs produce limits that tightly constrain current models of neutrino and ultra high energy cosmic ray production in GRB fireballs.

Journal ArticleDOI
TL;DR: This review summarizes the current understanding of electrostatic phenomena in ordered and disordered organic semiconductors, outlines numerical schemes developed for quantitative evaluation of electro static and induction contributions to ionization potentials and electron affinities of organic molecules in a solid state, and illustrates two applications of these techniques: interpretation of photoelectron spectroscopy of thin films and energetics of heterointerfaces in organic solar cells.
Abstract: This review summarizes the current understanding of electrostatic phenomena in ordered and disordered organic semiconductors, outlines numerical schemes developed for quantitative evaluation of electrostatic and induction contributions to ionization potentials and electron affinities of organic molecules in a solid state, and illustrates two applications of these techniques: interpretation of photoelectron spectroscopy of thin films and energetics of heterointerfaces in organic solar cells.

Journal ArticleDOI
TL;DR: This paper describes how the VAMDC Consortium is organised for the optimal distribution of atomic and molecular data for scientific research and urges authors of research papers using data cite the original experimental and theoretical papers as well as the relevant databases.
Abstract: The Virtual Atomic and Molecular Data Centre (VAMDC) Consortium is a worldwide consortium which federates atomic and molecular databases through an e-science infrastructure and an organisation to support this activity. About 90% of the inter-connected databases handle data that are used for the interpretation of astronomical spectra and for modelling in many fields of astrophysics. Recently the VAMDC Consortium has connected databases from the radiation damage and the plasma communities, as well as promoting the publication of data from Indian institutes. This paper describes how the VAMDC Consortium is organised for the optimal distribution of atomic and molecular data for scientific research. It is noted that the VAMDC Consortium strongly advocates that authors of research papers using data cite the original experimental and theoretical papers as well as the relevant databases.

Journal ArticleDOI
Khachatryan1, Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam2  +2255 moreInstitutions (183)
TL;DR: In this paper, the results on two-particle angular correlations for charged particles produced in pp collisions at a center-of-mass energy of 13 TeV were presented, and the data were taken with the CMS detector at the LHC.
Abstract: Results on two-particle angular correlations for charged particles produced in pp collisions at a center-of-mass energy of 13 TeV are presented. The data were taken with the CMS detector at the LHC and correspond to an integrated luminosity of about 270 nb^(−1). The correlations are studied over a broad range of pseudorapidity (|η| 2.0), near-side (Δϕ≈0) structure emerges in the two-particle Δη–Δϕ correlation functions. The magnitude of the correlation exhibits a pronounced maximum in the range 1.0

Journal ArticleDOI
Khachatryan1, Albert M. Sirunyan2, Armen Tumasyan2, Wolfgang Adam  +2332 moreInstitutions (183)
TL;DR: In this article, a search for single top quark production in the s channel in proton-proton collisions with the CMS detector at the CERN LHC in decay modes of the top quarks containing a muon or an electron in the final state is presented.
Abstract: A search is presented for single top quark production in the s channel in proton-proton collisions with the CMS detector at the CERN LHC in decay modes of the top quark containing a muon or an electron in the final state. The signal is extracted through a maximum-likelihood fit to the distribution of a multivariate discriminant defined using boosted decision trees to separate the expected signal contribution from background processes. Data collected at centre-of-mass energies of 7 and 8 TeV yield cross sections of 7.1 +/- 8.1 pb and 13.4 +/- 7.3 pb, respectively, and a best fit value of 2.0 +/- 0.9 for the combined ratio of the measured and expected values. The signal significance is 2.5 standard deviations, and the upper limit on the rate relative to the standard model expectation is 4.7 at 95% confidence level.

Journal ArticleDOI
TL;DR: Field-induced time-resolved microwave conductivity measurements unravel an unprecedented high average interfacial mobility of 170 cm(2) V (-1) s(-1) for the 2,7-isomer, holding great promise for the field of organic electronics.
Abstract: The structural and electronic properties of four isomers of didodecyl[1]-benzothieno[3,2-b][1]benzothiophene (C12-BTBT) have been investigated. Results show the strong impact of the molecular packing on charge carrier transport and electronic polarization properties. Field-induced time-resolved microwave conductivity measurements unravel an unprecedented high average interfacial mobility of 170 cm(2) V(-1) s(-1) for the 2,7-isomer, holding great promise for the field of organic electronics.

Journal ArticleDOI
Vardan Khachatryan1, Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam2  +2287 moreInstitutions (178)
TL;DR: In this article, the angular distribution and the differential branching fraction of the decay B0 to K*0(892) mu mu are studied using data corresponding to an integrated luminosity of 20.5 inverse femtobarns collected with the CMS detector at the LHC in pp collisions at sqrt(s) = 8 TeV.

Journal ArticleDOI
TL;DR: An integrated approach articulating together the classical biomechanical factors and EMG and the high-density EEG and ERP signals to allow finer mathematical analysis to optimize sport performance, such as microstates, coherency/directionality analysis and neural generators is suggested.
Abstract: Brain dynamics is at the basis of top performance accomplishment in sports. The search for neural biomarkers of performance remains a challenge in movement science and sport psychology. The non-invasive nature of high-density electroencephalography (EEG) recording has made it a most promising avenue for providing quantitative feedback to practitioners and coaches. Here, we review the current relevance of the main types of EEG oscillations in order to trace a perspective for future practical applications of EEG and event-related potentials (ERP) in sport. In this context, the hypotheses of unified brain rhythms and continuity between wake and sleep states should provide a functional template for EEG biomarkers in sport. The oscillations in the thalamo-cortical and hippocampal circuitry including the physiology of the place cells and the grid cells provide a frame of reference for the analysis of delta, theta, beta, alpha (incl.mu), and gamma oscillations recorded in the space field of human performance. Based on recent neuronal models facilitating the distinction between the different dynamic regimes (selective gating and binding) in these different oscillations we suggest an integrated approach articulating together the classical biomechanical factors (3D movements and EMG) and the high-density EEG and ERP signals to allow finer mathematical analysis to optimize sport performance, such as microstates, coherency/directionality analysis and neural generators.

Journal ArticleDOI
Vardan Khachatryan1, Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam2  +2239 moreInstitutions (171)
TL;DR: In this paper, a search for the resonant production of high-mass photon pairs is presented based on samples of proton-proton collision data collected by the CMS experiment at center-of-mass energies of 8 and 13 TeV, corresponding to integrated luminosities of 19.7 and 3.3 fb(-1).
Abstract: A search for the resonant production of high-mass photon pairs is presented. The analysis is based on samples of proton-proton collision data collected by the CMS experiment at center-of-mass energies of 8 and 13 TeV, corresponding to integrated luminosities of 19.7 and 3.3 fb(-1), respectively. The interpretation of the search results focuses on spin-0 and spin-2 resonances with masses between 0.5 and 4 TeV and with widths, relative to the mass, between 1.4 x 10(-4) and 5.6 x 10(-2). Limits are set on scalar resonances produced through gluon-gluon fusion, and on Randall-Sundrum gravitons. A modest excess of events compatible with a narrow resonance with a mass of about 750 GeV is observed. The local significance of the excess is approximately 3.4 standard deviations. The significance is reduced to 1.6 standard deviations once the effect of searching under multiple signal hypotheses is considered. More data are required to determine the origin of this excess.

Journal ArticleDOI
TL;DR: In this article, a search for fermionic top quark partners T of charge 2/3 was carried out in proton-proton collisions corresponding to an integrated luminosity of 19.7 inverse femtobarns collected at a center-of-mass energy of sqrt(s) = 8 TeV with the CMS detector at the LHC.
Abstract: A search for fermionic top quark partners T of charge 2/3 is presented. The search is carried out in proton-proton collisions corresponding to an integrated luminosity of 19.7 inverse femtobarns collected at a center-of-mass energy of sqrt(s) = 8 TeV with the CMS detector at the LHC. The T quarks are assumed to be produced strongly in pairs and can decay into tH, tZ, and bW. The search is performed in five exclusive channels: a single-lepton channel, a multilepton channel, two all-hadronic channels optimized either for the bW or the tH decay, and one channel in which the Higgs boson decays into two photons. The results are found to be compatible with the standard model expectations in all the investigated final states. A statistical combination of these results is performed and lower limits on the T quark mass are set. Depending on the branching fractions, lower mass limits between 720 and 920 GeV at 95% confidence level are found. These are among the strongest limits on vector-like T quarks obtained to date.

Journal ArticleDOI
TL;DR: In this article, an approach based on a two-step phosphorus/nitrogen chemical modification was proposed to enhance the flame retardant effect of lignin in polylactide (PLA) composites.

Journal ArticleDOI
TL;DR: In this paper, the authors considered four-dimensional Higher-Spin theory at the first nontrivial order corresponding to the cubic action and derived the corrections to the Fronsdal equations.
Abstract: We consider four-dimensional Higher-Spin Theory at the first nontrivial order corresponding to the cubic action. All Higher-Spin interaction vertices are explicitly obtained from Vasiliev’s equations. In particular, we obtain the vertices that are not determined solely by the Higher-Spin algebra structure constants. The dictionary between the Fronsdal fields and Higher-Spin connections is found and the corrections to the Fronsdal equations are derived. These corrections turn out to involve derivatives of arbitrary order. We observe that the vertices not determined by the Higher-Spin algebra produce naked infinities, when decomposed into the minimal derivative vertices and improvements. Therefore, standard methods can only be used to check a rather limited number of correlation functions within the HS AdS/CFT duality. A possible resolution of the puzzle is discussed. 1 ar X iv :1 50 8. 04 13 9v 1 [ he pth ] 1 7 A ug 2 01 5

Journal ArticleDOI
TL;DR: In this paper, the authors describe the algorithms used by the CMS experiment to reconstruct and identify tau to hadrons + tau neutrino decays during Run 1 of the LHC.
Abstract: This paper describes the algorithms used by the CMS experiment to reconstruct and identify tau to hadrons + tau neutrino decays during Run 1 of the LHC. The performance of the algorithms is studied in proton-proton collisions recorded at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 inverse femtobarns. The algorithms achieve an identification efficiency of 50-60%, with misidentification rates for quark and gluon jets, electrons, and muons between per mille and per cent levels.