scispace - formally typeset
Search or ask a question
Institution

University of Münster

EducationMünster, Germany
About: University of Münster is a education organization based out in Münster, Germany. It is known for research contribution in the topics: Population & Catalysis. The organization has 35609 authors who have published 69059 publications receiving 2278534 citations. The organization is also known as: University of Munster & University of Muenster.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets is presented.
Abstract: Microorganisms are vital in mediating the earth's biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: 'When do we need to understand microbial community structure to accurately predict function?' We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.

436 citations

Journal ArticleDOI
TL;DR: The intention of this review article is to present a critical evaluation of the actual development of static force spectroscopy, and mainly focuses on experiments dealing with inter- and intramolecular forces-starting with "simple" electrostatic forces, then ligand-receptor systems, and finally the stretching of individual molecules.
Abstract: How do molecules interact with each other? What happens if a neurotransmitter binds to a ligand-operated ion channel? How do antibodies recognize their antigens? Molecular recognition events play a pivotal role in nature: in enzymatic catalysis and during the replication and transcription of the genome; it is also important for the cohesion of cellular structures and in numerous metabolic reactions that molecules interact with each other in a specific manner. Conventional methods such as calorimetry provide very precise values of binding enthalpies; these are, however, average values obtained from a large ensemble of molecules without knowledge of the dynamics of the molecular recognition event. Which forces occur when a single molecular couple meets and forms a bond? Since the development of the scanning force microscope and force spectroscopy a couple of years ago, tools have now become available for measuring the forces between interfaces with high precision—starting from colloidal forces to the interaction of single molecules. The manipulation of individual molecules using force spectroscopy is also possible. In this way, the mechanical properties on a molecular scale are measurable. The study of single molecules is not an exclusive domain of force spectroscopy; it can also be performed with a surface force apparatus, laser tweezers, or the micropipette technique. Regardless of these techniques, force spectroscopy has been proven as an extraordinary versatile tool. The intention of this review article is to present a critical evaluation of the actual development of static force spectroscopy. The article mainly focuses on experiments dealing with inter- and intramolecular forces—starting with “simple” electrostatic forces, then ligand–receptor systems, and finally the stretching of individual molecules.

436 citations

Journal ArticleDOI
20 Mar 2020-Science
TL;DR: Results support the radial unit hypothesis that different developmental mechanisms promote surface area expansion and increases in thickness and find evidence that brain structure is a key phenotype along the causal pathway that leads from genetic variation to differences in general cognitive function.
Abstract: The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder.

436 citations

Journal ArticleDOI
TL;DR: In this article, the authors defined the factors associated with the occurrence of stroke and systemic embolism in a large international atrial fibrillation (AF) trial and used Cox proportional hazards modeling to identify factors at randomization independently associated with either stroke or noncentral nervous system embolisms based on intention-to-treatment analysis.
Abstract: Background—We sought to define the factors associated with the occurrence of stroke and systemic embolism in a large, international atrial fibrillation (AF) trial. Methods and Results—In ROCKET AF (Rivaroxaban Once-daily, oral, direct factor Xa inhibition Compared with vitamin K antagonism for prevention of stroke and Embolism Trial in Atrial Fibrillation), 14 264 patients with nonvalvular AF and creatinine clearance ≥30 mL/min were randomized to rivaroxaban or dose-adjusted warfarin. Cox proportional hazards modeling was used to identify factors at randomization independently associated with the occurrence of stroke or non–central nervous system embolism based on intention-to-treat analysis. A risk score was developed in ROCKET AF and validated in ATRIA (AnTicoagulation and Risk factors In Atrial fibrillation), an independent AF patient cohort. Over a median follow-up of 1.94 years, 575 patients (4.0%) experienced primary end-point events. Reduced creatinine clearance was a strong, independent predictor ...

435 citations

Journal ArticleDOI
TL;DR: In psychophysical experiments with a two-alternative forced-choice task, it is quantified how much humans can unknowingly be redirected on physical paths that are different from the visually perceived paths.
Abstract: In immersive virtual environments (IVEs), users can control their virtual viewpoint by moving their tracked head and walking through the real world. Usually, movements in the real world are mapped one-to-one to virtual camera motions. With redirection techniques, the virtual camera is manipulated by applying gains to user motion so that the virtual world moves differently than the real world. Thus, users can walk through large-scale IVEs while physically remaining in a reasonably small workspace. In psychophysical experiments with a two-alternative forced-choice task, we have quantified how much humans can unknowingly be redirected on physical paths that are different from the visually perceived paths. We tested 12 subjects in three different experiments: (E1) discrimination between virtual and physical rotations, (E2) discrimination between virtual and physical straightforward movements, and (E3) discrimination of path curvature. In experiment E1, subjects performed rotations with different gains, and then had to choose whether the visually perceived rotation was smaller or greater than the physical rotation. In experiment E2, subjects chose whether the physical walk was shorter or longer than the visually perceived scaled travel distance. In experiment E3, subjects estimate the path curvature when walking a curved path in the real world while the visual display shows a straight path in the virtual world. Our results show that users can be turned physically about 49 percent more or 20 percent less than the perceived virtual rotation, distances can be downscaled by 14 percent and upscaled by 26 percent, and users can be redirected on a circular arc with a radius greater than 22 m while they believe that they are walking straight.

435 citations


Authors

Showing all 36075 results

NameH-indexPapersCitations
Hyun-Chul Kim1764076183227
Klaus Müllen1642125140748
Giacomo Bruno1581687124368
Anders M. Dale156823133891
Holger J. Schünemann141810113169
Joachim Heinrich136130976887
Markus Merschmeyer132118884975
Klaus Ley12949557964
Robert W. Mahley12836360774
Robert J. Kurman12739760277
Bart Barlogie12677957803
Thomas Schwarz12370154560
Carlos Caldas12254773840
Klaus Weber12152460346
Andrey L. Rogach11757646820
Network Information
Related Institutions (5)
Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

96% related

University of Zurich
124K papers, 5.3M citations

96% related

University of Amsterdam
140.8K papers, 5.9M citations

95% related

University of Pittsburgh
201K papers, 9.6M citations

95% related

University of California, Irvine
113.6K papers, 5.5M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023253
2022831
20213,683
20203,499
20193,236
20182,918