scispace - formally typeset
Search or ask a question
Institution

University of New South Wales

EducationSydney, New South Wales, Australia
About: University of New South Wales is a education organization based out in Sydney, New South Wales, Australia. It is known for research contribution in the topics: Population & Poison control. The organization has 51197 authors who have published 153634 publications receiving 4880608 citations. The organization is also known as: UNSW & UNSW Australia.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, direct torque control (DTC) for permanent magnet synchronous motor (PMSM) drives has been investigated, and it is proved that the increase of electromagnetic torque in a permanent magnet motor is proportional to the angle between the stator and rotor flux linkages, and therefore the fast torque response can be obtained by adjusting the rotating speed of the stators flux linkage as fast as possible.
Abstract: This paper describes an investigation of direct torque control (DTC) for permanent magnet synchronous motor (PMSM) drives. It is mathematically proven that the increase of electromagnetic torque in a permanent magnet motor is proportional to the increase of the angle between the stator and rotor flux linkages, and, therefore, the fast torque response can be obtained by adjusting the rotating speed of the stator flux linkage as fast as possible. It is also shown that the zero voltage vectors should not be used, and stator flux linkage should be kept moving with respect to the rotor flux linkage all the time. The implementation of DTC in the permanent magnet motor is discussed, and it is found that for DTC using available digital signal processors (DSPs), it is advantageous to have a motor with a high ratio of the rated stator flux linkage to stator voltage. The simulation results verify the proposed control and also show that the torque response under DTC is much faster than the one under current control.

932 citations

Journal ArticleDOI
TL;DR: It is proposed that delineating the precise roles of these transporters in tumorigenesis and treatment response will be important for the development of more effective targeted therapies.
Abstract: Multidrug transporter proteins are best known for their contributions to chemoresistance through the efflux of anticancer drugs from cancer cells. However, a considerable body of evidence also points to their importance in cancer extending beyond drug transport to fundamental roles in tumour biology. Currently, much of the evidence for these additional roles is correlative and definitive studies are needed to confirm causality. We propose that delineating the precise roles of these transporters in tumorigenesis and treatment response will be important for the development of more effective targeted therapies.

929 citations

Journal ArticleDOI
TL;DR: It is argued that existing evidence is sufficiently strong to warrant engineering controls targeting airborne transmission as part of an overall strategy to limit infection risk indoors, and that the use of engineering controls in public buildings would be an additional important measure globally to reduce the likelihood of transmission.

924 citations

Journal ArticleDOI
TL;DR: This review covers some of the recent investigations into the roles of five growth factors whose activities have been best characterised during tendon healing: insulin-like growth factor-I (IGF-I), transforming growth factor β (TGFβ), vascular endothelial growthFactor (VEGF), platelet-derived growth factor (PDGF), and basic fibroblast growth factor ($FGF).
Abstract: sustained and eventually terminated by a large number and variety of molecules. Growth factors represent one of the most important of the molecular families involved in healing, and a considerable number of studies have been undertaken in an effort to elucidate their many functions. This review covers some of the recent investigations into the roles of five growth factors whose activities have been best characterised during tendon healing: insulin-like growth factor-I (IGF-I), transforming growth factor β (TGFβ), vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), and basic fibroblast growth factor (bFGF). All five are markedly up-regulated following tendon injury and are active at multiple stages of the healing process. IGF-I has been shown to be highly expressed during the early inflammatory phase in a number of animal tendon healing models, and appears to aid in the proliferation and migration of fibroblasts and to subsequently increase collagen production. TGFβ is also active during inflammation, and has a variety of effects including the regulation of cellular migration and proliferation, and fibronectin binding interactions. VEGF is produced at its highest levels only after the inflammatory phase, at which time it is a powerful stimulator of angiogenesis. PDGF is produced shortly after tendon

923 citations

Journal ArticleDOI
TL;DR: The basics of cognitive load theory are described, the origins of the instructional implications are sketched, the articles accepted for this special issue as a representative sample of current research in this area are introduced, and the overall results in the context of the theory are discussed.
Abstract: Within the cognitive load theory research community it has become customary to report theoretical and empirical progress at international conference symposia and in special issues of journals (e.g., Educational Psychologist 2003; Learning and Instruction 2002). The continuation of this custom at the 10th European Conference for Research on Learning and Instruction, 2003, in Padova, Italy, has materialized in this special issue of Instructional Science on the instructional implications of the interaction between information structures and cognitive architecture. Since the 1990s this interaction has begun to emerge as an explicit field of study for instructional designers and researchers. In this introduction, we describe the basics of cognitive load theory, sketch the origins of the instructional implications, introduce the articles accepted for this special issue as a representative sample of current research in this area, and discuss the overall results in the context of the theory. It is generally accepted that performance degrades at the cognitive load extremes of either excessively low load (underload) or excessively high load (overload) – see e.g., Teigen (1994). Under conditions of both underload and overload, learners may cease to learn. So, whereas learning situations with low processing demands will benefit from practice conditions that increase the load and challenge the learner, learning situations with an extremely high load will benefit from practice conditions that reduce the load to more manageable levels (Wulf and Shea 2002). Cognitive load theory (CLT; Paas, Renkl and Sweller 2003; Sweller 1988, 1999) is mainly concerned with the learning of complex cognitive tasks, where learners are often overwhelmed by the number of information elements and their interactions that need to be processed simultaneously before meaningful learning can commence. Instructional control of this (too) high load, in order to attain meaningful learning in complex cognitive domains, has

923 citations


Authors

Showing all 51897 results

NameH-indexPapersCitations
Ronald C. Kessler2741332328983
Nicholas G. Martin1921770161952
John C. Morris1831441168413
Richard S. Ellis169882136011
Ian J. Deary1661795114161
Nicholas J. Talley158157190197
Wolfgang Wagner1562342123391
Bruce D. Walker15577986020
Xiang Zhang1541733117576
Ian Smail15189583777
Rui Zhang1512625107917
Marvin Johnson1491827119520
John R. Hodges14981282709
Amartya Sen149689141907
J. Fraser Stoddart147123996083
Network Information
Related Institutions (5)
University of Melbourne
174.8K papers, 6.3M citations

97% related

University of Manchester
168K papers, 6.4M citations

94% related

McGill University
162.5K papers, 6.9M citations

93% related

University College London
210.6K papers, 9.8M citations

93% related

University of British Columbia
209.6K papers, 9.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023389
20221,183
202111,342
202011,235
20199,891
20189,145