scispace - formally typeset
Search or ask a question

Showing papers by "University of New South Wales published in 2020"


Journal ArticleDOI
Theo Vos1, Theo Vos2, Theo Vos3, Stephen S Lim  +2416 moreInstitutions (246)
TL;DR: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates, and there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries.

5,802 citations


Journal ArticleDOI
Nabila Aghanim1, Yashar Akrami2, Yashar Akrami3, Yashar Akrami4  +229 moreInstitutions (70)
TL;DR: In this article, the authors present cosmological parameter results from the full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction.
Abstract: We present cosmological parameter results from the final full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction Compared to the 2015 results, improved measurements of large-scale polarization allow the reionization optical depth to be measured with higher precision, leading to significant gains in the precision of other correlated parameters Improved modelling of the small-scale polarization leads to more robust constraints on manyparameters,withresidualmodellinguncertaintiesestimatedtoaffectthemonlyatthe05σlevelWefindgoodconsistencywiththestandard spatially-flat6-parameter ΛCDMcosmologyhavingapower-lawspectrumofadiabaticscalarperturbations(denoted“base ΛCDM”inthispaper), from polarization, temperature, and lensing, separately and in combination A combined analysis gives dark matter density Ωch2 = 0120±0001, baryon density Ωbh2 = 00224±00001, scalar spectral index ns = 0965±0004, and optical depth τ = 0054±0007 (in this abstract we quote 68% confidence regions on measured parameters and 95% on upper limits) The angular acoustic scale is measured to 003% precision, with 100θ∗ = 10411±00003Theseresultsareonlyweaklydependentonthecosmologicalmodelandremainstable,withsomewhatincreasederrors, in many commonly considered extensions Assuming the base-ΛCDM cosmology, the inferred (model-dependent) late-Universe parameters are: HubbleconstantH0 = (674±05)kms−1Mpc−1;matterdensityparameterΩm = 0315±0007;andmatterfluctuationamplitudeσ8 = 0811±0006 We find no compelling evidence for extensions to the base-ΛCDM model Combining with baryon acoustic oscillation (BAO) measurements (and consideringsingle-parameterextensions)weconstraintheeffectiveextrarelativisticdegreesoffreedomtobe Neff = 299±017,inagreementwith the Standard Model prediction Neff = 3046, and find that the neutrino mass is tightly constrained toPmν < 012 eV The CMB spectra continue to prefer higher lensing amplitudesthan predicted in base ΛCDM at over 2σ, which pulls some parameters that affect thelensing amplitude away from the ΛCDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAOdataThejointconstraintwithBAOmeasurementsonspatialcurvatureisconsistentwithaflatuniverse, ΩK = 0001±0002Alsocombining with Type Ia supernovae (SNe), the dark-energy equation of state parameter is measured to be w0 = −103±003, consistent with a cosmological constant We find no evidence for deviations from a purely power-law primordial spectrum, and combining with data from BAO, BICEP2, and Keck Array data, we place a limit on the tensor-to-scalar ratio r0002 < 006 Standard big-bang nucleosynthesis predictions for the helium and deuterium abundances for the base-ΛCDM cosmology are in excellent agreement with observations The Planck base-ΛCDM results are in good agreement with BAO, SNe, and some galaxy lensing observations, but in slight tension with the Dark Energy Survey’s combined-probe results including galaxy clustering (which prefers lower fluctuation amplitudes or matter density parameters), and in significant, 36σ, tension with local measurements of the Hubble constant (which prefer a higher value) Simple model extensions that can partially resolve these tensions are not favoured by the Planck data

4,688 citations


Journal ArticleDOI
TL;DR: The largest declines in risk exposure from 2010 to 2019 were among a set of risks that are strongly linked to social and economic development, including household air pollution; unsafe water, sanitation, and handwashing; and child growth failure.

3,059 citations


Journal ArticleDOI
TL;DR: The European Position Paper on Rhinosinusitis and Nasal Polyps 2020 is the update of similar evidence based position papers published in 2005 and 2007 and 2012 and addresses areas not extensively covered in EPOS2012 such as paediatric CRS and sinus surgery.
Abstract: The European Position Paper on Rhinosinusitis and Nasal Polyps 2020 is the update of similar evidence based position papers published in 2005 and 2007 and 2012. The core objective of the EPOS2020 guideline is to provide revised, up-to-date and clear evidence-based recommendations and integrated care pathways in ARS and CRS. EPOS2020 provides an update on the literature published and studies undertaken in the eight years since the EPOS2012 position paper was published and addresses areas not extensively covered in EPOS2012 such as paediatric CRS and sinus surgery. EPOS2020 also involves new stakeholders, including pharmacists and patients, and addresses new target users who have become more involved in the management and treatment of rhinosinusitis since the publication of the last EPOS document, including pharmacists, nurses, specialised care givers and indeed patients themselves, who employ increasing self-management of their condition using over the counter treatments. The document provides suggestions for future research in this area and offers updated guidance for definitions and outcome measurements in research in different settings. EPOS2020 contains chapters on definitions and classification where we have defined a large number of terms and indicated preferred terms. A new classification of CRS into primary and secondary CRS and further division into localized and diffuse disease, based on anatomic distribution is proposed. There are extensive chapters on epidemiology and predisposing factors, inflammatory mechanisms, (differential) diagnosis of facial pain, allergic rhinitis, genetics, cystic fibrosis, aspirin exacerbated respiratory disease, immunodeficiencies, allergic fungal rhinosinusitis and the relationship between upper and lower airways. The chapters on paediatric acute and chronic rhinosinusitis are totally rewritten. All available evidence for the management of acute rhinosinusitis and chronic rhinosinusitis with or without nasal polyps in adults and children is systematically reviewed and integrated care pathways based on the evidence are proposed. Despite considerable increases in the amount of quality publications in recent years, a large number of practical clinical questions remain. It was agreed that the best way to address these was to conduct a Delphi exercise . The results have been integrated into the respective sections. Last but not least, advice for patients and pharmacists and a new list of research needs are included. The full document can be downloaded for free on the website of this journal: http://www.rhinologyjournal.com.

2,853 citations


Journal ArticleDOI
TL;DR: In this article, the international 14C calibration curves for both the Northern and Southern Hemispheres, as well as for the ocean surface layer, have been updated to include a wealth of new data and extended to 55,000 cal BP.
Abstract: Radiocarbon (14C) ages cannot provide absolutely dated chronologies for archaeological or paleoenvironmental studies directly but must be converted to calendar age equivalents using a calibration curve compensating for fluctuations in atmospheric 14C concentration. Although calibration curves are constructed from independently dated archives, they invariably require revision as new data become available and our understanding of the Earth system improves. In this volume the international 14C calibration curves for both the Northern and Southern Hemispheres, as well as for the ocean surface layer, have been updated to include a wealth of new data and extended to 55,000 cal BP. Based on tree rings, IntCal20 now extends as a fully atmospheric record to ca. 13,900 cal BP. For the older part of the timescale, IntCal20 comprises statistically integrated evidence from floating tree-ring chronologies, lacustrine and marine sediments, speleothems, and corals. We utilized improved evaluation of the timescales and location variable 14C offsets from the atmosphere (reservoir age, dead carbon fraction) for each dataset. New statistical methods have refined the structure of the calibration curves while maintaining a robust treatment of uncertainties in the 14C ages, the calendar ages and other corrections. The inclusion of modeled marine reservoir ages derived from a three-dimensional ocean circulation model has allowed us to apply more appropriate reservoir corrections to the marine 14C data rather than the previous use of constant regional offsets from the atmosphere. Here we provide an overview of the new and revised datasets and the associated methods used for the construction of the IntCal20 curve and explore potential regional offsets for tree-ring data. We discuss the main differences with respect to the previous calibration curve, IntCal13, and some of the implications for archaeology and geosciences ranging from the recent past to the time of the extinction of the Neanderthals.

2,800 citations


Journal ArticleDOI
Paul Bastard1, Paul Bastard2, Paul Bastard3, Lindsey B. Rosen4, Qian Zhang2, Eleftherios Michailidis2, Hans-Heinrich Hoffmann2, Yu Zhang4, Karim Dorgham3, Quentin Philippot1, Quentin Philippot3, Jérémie Rosain1, Jérémie Rosain3, Vivien Béziat3, Vivien Béziat1, Vivien Béziat2, Jeremy Manry1, Jeremy Manry3, Elana Shaw4, Liis Haljasmägi5, Pärt Peterson5, Lazaro Lorenzo3, Lazaro Lorenzo1, Lucy Bizien3, Lucy Bizien1, Sophie Trouillet-Assant6, Kerry Dobbs4, Adriana Almeida de Jesus4, Alexandre Belot6, Anne Kallaste7, Emilie Catherinot, Yacine Tandjaoui-Lambiotte1, Jérémie Le Pen2, Gaspard Kerner1, Gaspard Kerner3, Benedetta Bigio2, Yoann Seeleuthner1, Yoann Seeleuthner3, Rui Yang2, Alexandre Bolze, András N Spaan8, András N Spaan2, Ottavia M. Delmonte4, Michael S. Abers4, Alessandro Aiuti9, Giorgio Casari9, Vito Lampasona9, Lorenzo Piemonti9, Fabio Ciceri9, Kaya Bilguvar10, Richard P. Lifton2, Richard P. Lifton10, Marc Vasse, David M. Smadja3, Mélanie Migaud1, Mélanie Migaud3, Jérôme Hadjadj3, Benjamin Terrier3, Darragh Duffy11, Lluis Quintana-Murci11, Lluis Quintana-Murci12, Diederik van de Beek13, Lucie Roussel14, Donald C. Vinh14, Stuart G. Tangye15, Stuart G. Tangye16, Filomeen Haerynck17, David Dalmau18, Javier Martinez-Picado19, Javier Martinez-Picado20, Petter Brodin21, Petter Brodin22, Michel C. Nussenzweig23, Michel C. Nussenzweig2, Stéphanie Boisson-Dupuis3, Stéphanie Boisson-Dupuis1, Stéphanie Boisson-Dupuis2, Carlos Rodríguez-Gallego, Guillaume Vogt3, Trine H. Mogensen24, Trine H. Mogensen25, Andrew J. Oler4, Jingwen Gu4, Peter D. Burbelo4, Jeffrey I. Cohen4, Andrea Biondi26, Laura Rachele Bettini26, Mariella D'Angiò26, Paolo Bonfanti26, Patrick Rossignol27, Julien Mayaux3, Frédéric Rieux-Laucat3, Eystein S. Husebye28, Eystein S. Husebye29, Eystein S. Husebye30, Francesca Fusco, Matilde Valeria Ursini, Luisa Imberti31, Alessandra Sottini31, Simone Paghera31, Eugenia Quiros-Roldan32, Camillo Rossi, Riccardo Castagnoli33, Daniela Montagna33, Amelia Licari33, Gian Luigi Marseglia33, Xavier Duval, Jade Ghosn3, Hgid Lab4, Covid Clinicians5, Covid-Storm Clinicians§4, CoV-Contact Cohort§3, Amsterdam Umc Covid Biobank3, Amsterdam Umc Covid Biobank1, Amsterdam Umc Covid Biobank2, Covid Human Genetic Effort2, John S. Tsang4, Raphaela Goldbach-Mansky4, Kai Kisand5, Michail S. Lionakis4, Anne Puel3, Anne Puel1, Anne Puel2, Shen-Ying Zhang3, Shen-Ying Zhang2, Shen-Ying Zhang1, Steven M. Holland4, Guy Gorochov3, Emmanuelle Jouanguy2, Emmanuelle Jouanguy1, Emmanuelle Jouanguy3, Charles M. Rice2, Aurélie Cobat3, Aurélie Cobat1, Aurélie Cobat2, Luigi D. Notarangelo4, Laurent Abel2, Laurent Abel3, Laurent Abel1, Helen C. Su4, Jean-Laurent Casanova 
23 Oct 2020-Science
TL;DR: A means by which individuals at highest risk of life-threatening COVID-19 can be identified is identified, and the hypothesis that neutralizing auto-Abs against type I IFNs may underlie critical CO VID-19 is tested.
Abstract: Interindividual clinical variability in the course of SARS-CoV-2 infection is immense. We report that at least 101 of 987 patients with life-threatening COVID-19 pneumonia had neutralizing IgG auto-Abs against IFN-ω (13 patients), the 13 types of IFN-α (36), or both (52), at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1,227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 were men. A B cell auto-immune phenocopy of inborn errors of type I IFN immunity underlies life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men.

1,913 citations


Journal ArticleDOI
TL;DR: Document reviewers: Hind Beheiry (Sudan), Irina Chazova (Russia), Albertino Damasceno (Mozambique), Anna Dominiczak (UK), Stephen Harrap (Australia), Hiroshi Itoh (Japan), Tazeen Jafar (Singapore), Marc Jaffe (USA), Patricio Jaramillo-Lopez (Colombia), Kazuomi Kario (Japan).
Abstract: Document reviewers: Hind Beheiry (Sudan), Irina Chazova (Russia), Albertino Damasceno (Mozambique), Anna Dominiczak (UK), Anastase Dzudie (Cameroon), Stephen Harrap (Australia), Hiroshi Itoh (Japan), Tazeen Jafar (Singapore), Marc Jaffe (USA), Patricio Jaramillo-Lopez (Colombia), Kazuomi Kario (Japan), Giuseppe Mancia (Italy), Ana Mocumbi (Mozambique), Sanjeevi N.Narasingan (India), Elijah Ogola (Kenya), Srinath Reddy (India), Ernesto Schiffrin (Canada), Ann Soenarta (Indonesia), Rhian Touyz (UK), Yudah Turana (Indonesia), Michael Weber (USA), Paul Whelton (USA), Xin Hua Zhang, (Australia), Yuqing Zhang (China).

1,657 citations


Journal ArticleDOI
01 Sep 2020-Pain
TL;DR: This review provides a synopsis of the critical concepts, the analysis of comments from the IASP membership and public, and the committee's final recommendations for revisions to the definition and notes, which were discussed over a 2-year period.
Abstract: The current International Association for the Study of Pain (IASP) definition of pain as "An unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage" was recommended by the Subcommittee on Taxonomy and adopted by the IASP Council in 1979. This definition has become accepted widely by health care professionals and researchers in the pain field and adopted by several professional, governmental, and nongovernmental organizations, including the World Health Organization. In recent years, some in the field have reasoned that advances in our understanding of pain warrant a reevaluation of the definition and have proposed modifications. Therefore, in 2018, the IASP formed a 14-member, multinational Presidential Task Force comprising individuals with broad expertise in clinical and basic science related to pain, to evaluate the current definition and accompanying note and recommend whether they should be retained or changed. This review provides a synopsis of the critical concepts, the analysis of comments from the IASP membership and public, and the committee's final recommendations for revisions to the definition and notes, which were discussed over a 2-year period. The task force ultimately recommended that the definition of pain be revised to "An unpleasant sensory and emotional experience associated with, or resembling that associated with, actual or potential tissue damage," and that the accompanying notes be updated to a bulleted list that included the etymology. The revised definition and notes were unanimously accepted by the IASP Council early this year.

1,432 citations


Journal ArticleDOI
12 Nov 2020-Cell
TL;DR: It is found that both the magnitude of Ab responses to SARS-CoV-2 spike (S) and nucleoprotein and nAb titers correlate with clinical scores, and the immunodominance of the receptor-binding motif will guide the design of COVID-19 vaccines and therapeutics.

1,042 citations


Journal ArticleDOI
TL;DR: High proportion of severe to critical cases and high fatality rate were observed in the elderly COVID-19 patients and close monitoring and timely treatment should be performed for the elderly patients at high risk.

941 citations


Journal ArticleDOI
TL;DR: It is argued that existing evidence is sufficiently strong to warrant engineering controls targeting airborne transmission as part of an overall strategy to limit infection risk indoors, and that the use of engineering controls in public buildings would be an additional important measure globally to reduce the likelihood of transmission.

Journal ArticleDOI
Jens Kattge1, Gerhard Bönisch2, Sandra Díaz3, Sandra Lavorel  +751 moreInstitutions (314)
TL;DR: The extent of the trait data compiled in TRY is evaluated and emerging patterns of data coverage and representativeness are analyzed to conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements.
Abstract: Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.

Journal ArticleDOI
Nabila Aghanim1, Yashar Akrami2, Yashar Akrami3, Frederico Arroja4  +251 moreInstitutions (72)
TL;DR: In this paper, the authors present the cosmological legacy of the Planck satellite, which provides the strongest constraints on the parameters of the standard cosmology model and some of the tightest limits available on deviations from that model.
Abstract: The European Space Agency’s Planck satellite, which was dedicated to studying the early Universe and its subsequent evolution, was launched on 14 May 2009. It scanned the microwave and submillimetre sky continuously between 12 August 2009 and 23 October 2013, producing deep, high-resolution, all-sky maps in nine frequency bands from 30 to 857 GHz. This paper presents the cosmological legacy of Planck, which currently provides our strongest constraints on the parameters of the standard cosmological model and some of the tightest limits available on deviations from that model. The 6-parameter ΛCDM model continues to provide an excellent fit to the cosmic microwave background data at high and low redshift, describing the cosmological information in over a billion map pixels with just six parameters. With 18 peaks in the temperature and polarization angular power spectra constrained well, Planck measures five of the six parameters to better than 1% (simultaneously), with the best-determined parameter (θ*) now known to 0.03%. We describe the multi-component sky as seen by Planck, the success of the ΛCDM model, and the connection to lower-redshift probes of structure formation. We also give a comprehensive summary of the major changes introduced in this 2018 release. The Planck data, alone and in combination with other probes, provide stringent constraints on our models of the early Universe and the large-scale structure within which all astrophysical objects form and evolve. We discuss some lessons learned from the Planck mission, and highlight areas ripe for further experimental advances.

Journal ArticleDOI
15 Apr 2020-Joule
TL;DR: In this article, the authors focus on fundamental aspects of the chemistry of Zn-ion batteries that are the least understood and on which there has been progress over the last few years, and provide guidance for future research regarding (1) the significant challenge of proton/Zn2+ co-intercalation in aqueous media, (2) limitations to conversion chemistry that often accompanies ZIB electrochemistry, (3) positive aspects of facile Zn 2+ (de)intercalations in nonaqueous electrolytes and organic cathode materials, (

Journal ArticleDOI
TL;DR: The majority of COVID-19 cases are symptomatic with a moderate CFR, and patients living in Wuhan, older patients, and those with medical comorbidities tend to have more severe clinical symptoms and higher CFR.

Journal ArticleDOI
TL;DR: The most recent data release from the Sloan Digital Sky Surveys (SDSS-IV) is DR16 as mentioned in this paper, which is the fourth and penultimate from the fourth phase of the survey.
Abstract: This paper documents the sixteenth data release (DR16) from the Sloan Digital Sky Surveys; the fourth and penultimate from the fourth phase (SDSS-IV). This is the first release of data from the southern hemisphere survey of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2); new data from APOGEE-2 North are also included. DR16 is also notable as the final data release for the main cosmological program of the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and all raw and reduced spectra from that project are released here. DR16 also includes all the data from the Time Domain Spectroscopic Survey (TDSS) and new data from the SPectroscopic IDentification of ERosita Survey (SPIDERS) programs, both of which were co-observed on eBOSS plates. DR16 has no new data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey (or the MaNGA Stellar Library "MaStar"). We also preview future SDSS-V operations (due to start in 2020), and summarize plans for the final SDSS-IV data release (DR17).

Journal ArticleDOI
TL;DR: This Review discusses the latest advances regarding how each of the four parts of cholesterol metabolism is executed and regulated and how these pathways function in a concerted manner to maintain cholesterol homeostasis.
Abstract: Cholesterol homeostasis is vital for proper cellular and systemic functions. Disturbed cholesterol balance underlies not only cardiovascular disease but also an increasing number of other diseases such as neurodegenerative diseases and cancers. The cellular cholesterol level reflects the dynamic balance between biosynthesis, uptake, export and esterification — a process in which cholesterol is converted to neutral cholesteryl esters either for storage in lipid droplets or for secretion as constituents of lipoproteins. In this Review, we discuss the latest advances regarding how each of the four parts of cholesterol metabolism is executed and regulated. The key factors governing these pathways and the major mechanisms by which they respond to varying sterol levels are described. Finally, we discuss how these pathways function in a concerted manner to maintain cholesterol homeostasis. Cholesterol is an important structural component of all animal cell membranes that functions in various processes, including membrane dynamics and cell signalling, and is also a precursor of other molecules. Deregulation of cholesterol metabolism — biosynthesis, dietary absorption and cellular uptake, storage and efflux — is linked to many diseases, including cardiovascular and genetic diseases, and cancer. A better understanding of cholesterol metabolism offers the possibility to control systemic cholesterol levels to improve human health.


Journal ArticleDOI
TL;DR: The evidence is summarized that waist circumference and BMI together can provide improved assessments of cardiometabolic risk compared with either measurement alone, and it is recommended that health professionals are trained to properly perform this simple measurement in clinical practice.
Abstract: Despite decades of unequivocal evidence that waist circumference provides both independent and additive information to BMI for predicting morbidity and risk of death, this measurement is not routinely obtained in clinical practice. This Consensus Statement proposes that measurements of waist circumference afford practitioners with an important opportunity to improve the management and health of patients. We argue that BMI alone is not sufficient to properly assess or manage the cardiometabolic risk associated with increased adiposity in adults and provide a thorough review of the evidence that will empower health practitioners and professional societies to routinely include waist circumference in the evaluation and management of patients with overweight or obesity. We recommend that decreases in waist circumference are a critically important treatment target for reducing adverse health risks for both men and women. Moreover, we describe evidence that clinically relevant reductions in waist circumference can be achieved by routine, moderate-intensity exercise and/or dietary interventions. We identify gaps in the knowledge, including the refinement of waist circumference threshold values for a given BMI category, to optimize obesity risk stratification across age, sex and ethnicity. We recommend that health professionals are trained to properly perform this simple measurement and consider it as an important 'vital sign' in clinical practice.

Journal ArticleDOI
TL;DR: The authors highlight the role of bottom-up movements to overcome structural economic growth imperatives spurring consumption by changing structures and culture towards safe and just systems.
Abstract: For over half a century, worldwide growth in affluence has continuously increased resource use and pollutant emissions far more rapidly than these have been reduced through better technology The affluent citizens of the world are responsible for most environmental impacts and are central to any future prospect of retreating to safer environmental conditions We summarise the evidence and present possible solution approaches Any transition towards sustainability can only be effective if far-reaching lifestyle changes complement technological advancements However, existing societies, economies and cultures incite consumption expansion and the structural imperative for growth in competitive market economies inhibits necessary societal change

Journal ArticleDOI
TL;DR: COVID-19–related rumors, stigma, and conspiracy theories circulating on online platforms, including fact-checking agency websites, Facebook, Twitter, and online newspapers, and their impacts on public health are examined.
Abstract: Infodemics, often including rumors, stigma, and conspiracy theories, have been common during the COVID-19 pandemic. Monitoring social media data has been identified as the best method for tracking rumors in real time and as a possible way to dispel misinformation and reduce stigma. However, the detection, assessment, and response to rumors, stigma, and conspiracy theories in real time are a challenge. Therefore, we followed and examined COVID-19-related rumors, stigma, and conspiracy theories circulating on online platforms, including fact-checking agency websites, Facebook, Twitter, and online newspapers, and their impacts on public health. Information was extracted between December 31, 2019 and April 5, 2020, and descriptively analyzed. We performed a content analysis of the news articles to compare and contrast data collected from other sources. We identified 2,311 reports of rumors, stigma, and conspiracy theories in 25 languages from 87 countries. Claims were related to illness, transmission and mortality (24%), control measures (21%), treatment and cure (19%), cause of disease including the origin (15%), violence (1%), and miscellaneous (20%). Of the 2,276 reports for which text ratings were available, 1,856 claims were false (82%). Misinformation fueled by rumors, stigma, and conspiracy theories can have potentially serious implications on the individual and community if prioritized over evidence-based guidelines. Health agencies must track misinformation associated with the COVID-19 in real time, and engage local communities and government stakeholders to debunk misinformation.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the joint design of the beamformers and AN covariance matrix at the AP and the phase shifters at the RISs for maximization of the system sum-rate while limiting the maximum information leakage to the potential eavesdroppers.
Abstract: In this paper, intelligent reflecting surfaces (IRSs) are employed to enhance the physical layer security in a challenging radio environment. In particular, a multi-antenna access point (AP) has to serve multiple single-antenna legitimate users, which do not have line-of-sight communication links, in the presence of multiple multi-antenna potential eavesdroppers whose channel state information (CSI) is not perfectly known. Artificial noise (AN) is transmitted from the AP to deliberately impair the eavesdropping channels for security provisioning. We investigate the joint design of the beamformers and AN covariance matrix at the AP and the phase shifters at the IRSs for maximization of the system sum-rate while limiting the maximum information leakage to the potential eavesdroppers. To this end, we formulate a robust non-convex optimization problem taking into account the impact of the imperfect CSI of the eavesdropping channels. To address the non-convexity of the optimization problem, an efficient algorithm is developed by capitalizing on alternating optimization, a penalty-based approach, successive convex approximation, and semidefinite relaxation. Simulation results show that IRSs can significantly improve the system secrecy performance compared to conventional architectures without IRS. Furthermore, our results unveil that, for physical layer security, uniformly distributing the reflecting elements among multiple IRSs is preferable over deploying them at a single IRS.

Journal ArticleDOI
TL;DR: In this article, the Southern Hemisphere curve (SHCal20) is proposed to estimate the mean Southern Hemisphere offset to be 36 ± 27 14C yrs older than the Northern Hemisphere offset, based upon a comparison of Southern Hemisphere tree-ring data compared with contemporaneous Northern Hemisphere data.
Abstract: Early researchers of radiocarbon levels in Southern Hemisphere tree rings identified a variable North-South hemispheric offset, necessitating construction of a separate radiocarbon calibration curve for the South. We present here SHCal20, a revised calibration curve from 0–55,000 cal BP, based upon SHCal13 and fortified by the addition of 14 new tree-ring data sets in the 2140–0, 3520–3453, 3608–3590 and 13,140–11,375 cal BP time intervals. We detail the statistical approaches used for curve construction and present recommendations for the use of the Northern Hemisphere curve (IntCal20), the Southern Hemisphere curve (SHCal20) and suggest where application of an equal mixture of the curves might be more appropriate. Using our Bayesian spline with errors-in-variables methodology, and based upon a comparison of Southern Hemisphere tree-ring data compared with contemporaneous Northern Hemisphere data, we estimate the mean Southern Hemisphere offset to be 36 ± 27 14C yrs older.

Journal ArticleDOI
11 Dec 2020
TL;DR: This work synthesizes all known cases of true asymptomatic coronavirus disease 2019 (COVID-19) and aims to synthesize all known avian influenza A viruses to help design mitigation measures against the pandemic.
Abstract: Background: Knowing the prevalence of true asymptomatic coronavirus disease 2019 (COVID-19) cases is critical for designing mitigation measures against the pandemic. We aimed to synthesize all avai...

Journal ArticleDOI
Nabila Aghanim1, Yashar Akrami2, Yashar Akrami3, Yashar Akrami4  +213 moreInstitutions (66)
TL;DR: In this article, the legacy Planck cosmic microwave background (CMB) likelihoods derived from the 2018 data release are described, with a hybrid method using different approximations at low (l ǫ ≥ 30) multipoles, implementing several methodological and data-analysis refinements compared to previous releases.
Abstract: We describe the legacy Planck cosmic microwave background (CMB) likelihoods derived from the 2018 data release. The overall approach is similar in spirit to the one retained for the 2013 and 2015 data release, with a hybrid method using different approximations at low (l ≥ 30) multipoles, implementing several methodological and data-analysis refinements compared to previous releases. With more realistic simulations, and better correction and modelling of systematic effects, we can now make full use of the CMB polarization observed in the High Frequency Instrument (HFI) channels. The low-multipole EE cross-spectra from the 100 GHz and 143 GHz data give a constraint on the ΛCDM reionization optical-depth parameter τ to better than 15% (in combination with the TT low-l data and the high-l temperature and polarization data), tightening constraints on all parameters with posterior distributions correlated with τ . We also update the weaker constraint on τ from the joint TEB likelihood using the Low Frequency Instrument (LFI) channels, which was used in 2015 as part of our baseline analysis. At higher multipoles, the CMB temperature spectrum and likelihood are very similar to previous releases. A better model of the temperature-to-polarization leakage and corrections for the effective calibrations of the polarization channels (i.e., the polarization efficiencies) allow us to make full use of polarization spectra, improving the ΛCDM constraints on the parameters θ MC , ω c , ω b , and H 0 by more than 30%, and ns by more than 20% compared to TT-only constraints. Extensive tests on the robustness of the modelling of the polarization data demonstrate good consistency, with some residual modelling uncertainties. At high multipoles, we are now limited mainly by the accuracy of the polarization efficiency modelling. Using our various tests, simulations, and comparison between different high-multipole likelihood implementations, we estimate the consistency of the results to be better than the 0.5 σ level on the ΛCDM parameters, as well as classical single-parameter extensions for the joint likelihood (to be compared to the 0.3 σ levels we achieved in 2015 for the temperature data alone on ΛCDM only). Minor curiosities already present in the previous releases remain, such as the differences between the best-fit ΛCDM parameters for the l > 800 ranges of the power spectrum, or the preference for more smoothing of the power-spectrum peaks than predicted in ΛCDM fits. These are shown to be driven by the temperature power spectrum and are not significantly modified by the inclusion of the polarization data. Overall, the legacy Planck CMB likelihoods provide a robust tool for constraining the cosmological model and represent a reference for future CMB observations.

Journal ArticleDOI
TL;DR: This article provides the first comprehensive review of tracing apps' key attributes, including system architecture, data management, privacy, security, proximity estimation, and attack vulnerability, and presents an overview of many proposed tracing app examples.
Abstract: The recent outbreak of COVID-19 has taken the world by surprise, forcing lockdowns and straining public health care systems COVID-19 is known to be a highly infectious virus, and infected individuals do not initially exhibit symptoms, while some remain asymptomatic Thus, a non-negligible fraction of the population can, at any given time, be a hidden source of transmissions In response, many governments have shown great interest in smartphone contact tracing apps that help automate the difficult task of tracing all recent contacts of newly identified infected individuals However, tracing apps have generated much discussion around their key attributes, including system architecture, data management, privacy, security, proximity estimation, and attack vulnerability In this article, we provide the first comprehensive review of these much-discussed tracing app attributes We also present an overview of many proposed tracing app examples, some of which have been deployed countrywide, and discuss the concerns users have reported regarding their usage We close by outlining potential research directions for next-generation app design, which would facilitate improved tracing and security performance, as well as wide adoption by the population at large

Journal ArticleDOI
TL;DR: Cases linked to superspreading events are estimated to account for 80% of all local transmission of SARS-CoV-2 in Hong Kong in a study with implications for public health policies.
Abstract: Superspreading events (SSEs) have characterized previous epidemics of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) infections1–6. For SARS-CoV-2, the degree to which SSEs are involved in transmission remains unclear, but there is growing evidence that SSEs might be a typical feature of COVID-197,8. Using contact tracing data from 1,038 SARS-CoV-2 cases confirmed between 23 January and 28 April 2020 in Hong Kong, we identified and characterized all local clusters of infection. We identified 4–7 SSEs across 51 clusters (n = 309 cases) and estimated that 19% (95% confidence interval, 15–24%) of cases seeded 80% of all local transmission. Transmission in social settings was associated with more secondary cases than households when controlling for age (P = 0.002). Decreasing the delay between symptom onset and case confirmation did not result in fewer secondary cases (P = 0.98), although the odds that an individual being quarantined as a contact interrupted transmission was 14.4 (95% CI, 1.9–107.2). Public health authorities should focus on rapidly tracing and quarantining contacts, along with implementing restrictions targeting social settings to reduce the risk of SSEs and suppress SARS-CoV-2 transmission. Cases linked to superspreading events are estimated to account for 80% of all local transmission of SARS-CoV-2 in Hong Kong in a study with implications for public health policies.

Journal ArticleDOI
TL;DR: The authors provide a comprehensive assessment of regional changes and show that most heat indicaters have increased since the 1950s, on spatial and temporal scales necessary for understanding impacts.
Abstract: Heatwaves have increased in intensity, frequency and duration, with these trends projected to worsen under enhanced global warming. Understanding regional heatwave trends has critical implications for the biophysical and human systems they impact. Until now a comprehensive assessment of regional observed changes was hindered by the range of metrics employed, underpinning datasets, and time periods examined. Here, using the Berkeley Earth temperature dataset and key heatwave metrics, we systematically examine regional and global observed heatwave trends. In almost all regions, heatwave frequency demonstrates the most rapid and significant change. A measure of cumulative heat shows significant increases almost everywhere since the 1950s, mainly driven by heatwave days. Trends in heatwave frequency, duration and cumulative heat have accelerated since the 1950s, and due to the high influence of variability we recommend regional trends are assessed over multiple decades. Our results provide comparable regional observed heatwave trends, on spatial and temporal scales necessary for understanding impacts. Heatwaves are expected to become more frequent and more intense under global warming, but how these trends differ on a regional scale is not well known. Here, the authors provide a comprehensive assessment of regional changes and show that most heat indicaters have increased since the 1950s.

Journal ArticleDOI
TL;DR: Evidence relevant to Earth's equilibrium climate sensitivity per doubling of atmospheric CO2, characterized by an effective sensitivity S, is assessed, using a Bayesian approach to produce a probability density function for S given all the evidence, and promising avenues for further narrowing the range are identified.
Abstract: We assess evidence relevant to Earth's equilibrium climate sensitivity per doubling of atmospheric CO2, characterized by an effective sensitivity S. This evidence includes feedback process understanding, the historical climate record, and the paleoclimate record. An S value lower than 2 K is difficult to reconcile with any of the three lines of evidence. The amount of cooling during the Last Glacial Maximum provides strong evidence against values of S greater than 4.5 K. Other lines of evidence in combination also show that this is relatively unlikely. We use a Bayesian approach to produce a probability density function (PDF) for S given all the evidence, including tests of robustness to difficult-to-quantify uncertainties and different priors. The 66% range is 2.6-3.9 K for our Baseline calculation and remains within 2.3-4.5 K under the robustness tests; corresponding 5-95% ranges are 2.3-4.7 K, bounded by 2.0-5.7 K (although such high-confidence ranges should be regarded more cautiously). This indicates a stronger constraint on S than reported in past assessments, by lifting the low end of the range. This narrowing occurs because the three lines of evidence agree and are judged to be largely independent and because of greater confidence in understanding feedback processes and in combining evidence. We identify promising avenues for further narrowing the range in S, in particular using comprehensive models and process understanding to address limitations in the traditional forcing-feedback paradigm for interpreting past changes.

Journal ArticleDOI
TL;DR: The 2019 phenotypic classification of IEI is reported, including the 65 new conditions, based on clinical and laboratory phenotypes for each of the ten broad categories of IEi.
Abstract: Since 2013, the International Union of Immunological Societies (IUIS) expert committee (EC) on Inborn Errors of Immunity (IEI) has published an updated phenotypic classification of IEI, which accompanies and complements their genotypic classification into ten tables. This phenotypic classification is user-friendly and serves as a resource for clinicians at the bedside. There are now 430 single-gene IEI underlying phenotypes as diverse as infection, malignancy, allergy, autoimmunity, and autoinflammation. We herein report the 2019 phenotypic classification, including the 65 new conditions. The diagnostic algorithms are based on clinical and laboratory phenotypes for each of the ten broad categories of IEI.