scispace - formally typeset
Search or ask a question
Institution

University of Tennessee Health Science Center

EducationMemphis, Tennessee, United States
About: University of Tennessee Health Science Center is a education organization based out in Memphis, Tennessee, United States. It is known for research contribution in the topics: Population & Medicine. The organization has 15716 authors who have published 26884 publications receiving 1176697 citations.
Topics: Population, Medicine, Transplantation, Cancer, Gene


Papers
More filters
Journal ArticleDOI
Shusei Sato, Satoshi Tabata, Hideki Hirakawa, Erika Asamizu  +320 moreInstitutions (51)
31 May 2012-Nature
TL;DR: A high-quality genome sequence of domesticated tomato is presented, a draft sequence of its closest wild relative, Solanum pimpinellifolium, is compared, and the two tomato genomes are compared to each other and to the potato genome.
Abstract: Tomato (Solanum lycopersicum) is a major crop plant and a model system for fruit development. Solanum is one of the largest angiosperm genera1 and includes annual and perennial plants from diverse habitats. Here we present a high-quality genome sequence of domesticated tomato, a draft sequence of its closest wild relative, Solanum pimpinellifolium2, and compare them to each other and to the potato genome (Solanum tuberosum). The two tomato genomes show only 0.6% nucleotide divergence and signs of recent admixture, but show more than 8% divergence from potato, with nine large and several smaller inversions. In contrast to Arabidopsis, but similar to soybean, tomato and potato small RNAs map predominantly to gene-rich chromosomal regions, including gene promoters. The Solanum lineage has experienced two consecutive genome triplications: one that is ancient and shared with rosids, and a more recent one. These triplications set the stage for the neofunctionalization of genes controlling fruit characteristics, such as colour and fleshiness.

2,687 citations

Journal ArticleDOI
Sabeeha S. Merchant1, Simon E. Prochnik2, Olivier Vallon3, Elizabeth H. Harris4, Steven J. Karpowicz1, George B. Witman5, Astrid Terry2, Asaf Salamov2, Lillian K. Fritz-Laylin6, Laurence Maréchal-Drouard7, Wallace F. Marshall8, Liang-Hu Qu9, David R. Nelson10, Anton A. Sanderfoot11, Martin H. Spalding12, Vladimir V. Kapitonov13, Qinghu Ren, Patrick J. Ferris14, Erika Lindquist2, Harris Shapiro2, Susan Lucas2, Jane Grimwood15, Jeremy Schmutz15, Pierre Cardol3, Pierre Cardol16, Heriberto Cerutti17, Guillaume Chanfreau1, Chun-Long Chen9, Valérie Cognat7, Martin T. Croft18, Rachel M. Dent6, Susan K. Dutcher19, Emilio Fernández20, Hideya Fukuzawa21, David González-Ballester22, Diego González-Halphen23, Armin Hallmann, Marc Hanikenne16, Michael Hippler24, William Inwood6, Kamel Jabbari25, Ming Kalanon26, Richard Kuras3, Paul A. Lefebvre11, Stéphane D. Lemaire27, Alexey V. Lobanov17, Martin Lohr28, Andrea L Manuell29, Iris Meier30, Laurens Mets31, Maria Mittag32, Telsa M. Mittelmeier33, James V. Moroney34, Jeffrey L. Moseley22, Carolyn A. Napoli33, Aurora M. Nedelcu35, Krishna K. Niyogi6, Sergey V. Novoselov17, Ian T. Paulsen, Greg Pazour5, Saul Purton36, Jean-Philippe Ral7, Diego Mauricio Riaño-Pachón37, Wayne R. Riekhof, Linda A. Rymarquis38, Michael Schroda, David B. Stern39, James G. Umen14, Robert D. Willows40, Nedra F. Wilson41, Sara L. Zimmer39, Jens Allmer42, Janneke Balk18, Katerina Bisova43, Chong-Jian Chen9, Marek Eliáš44, Karla C Gendler33, Charles R. Hauser45, Mary Rose Lamb46, Heidi K. Ledford6, Joanne C. Long1, Jun Minagawa47, M. Dudley Page1, Junmin Pan48, Wirulda Pootakham22, Sanja Roje49, Annkatrin Rose50, Eric Stahlberg30, Aimee M. Terauchi1, Pinfen Yang51, Steven G. Ball7, Chris Bowler25, Carol L. Dieckmann33, Vadim N. Gladyshev17, Pamela J. Green38, Richard A. Jorgensen33, Stephen P. Mayfield29, Bernd Mueller-Roeber37, Sathish Rajamani30, Richard T. Sayre30, Peter Brokstein2, Inna Dubchak2, David Goodstein2, Leila Hornick2, Y. Wayne Huang2, Jinal Jhaveri2, Yigong Luo2, Diego Martinez2, Wing Chi Abby Ngau2, Bobby Otillar2, Alexander Poliakov2, Aaron Porter2, Lukasz Szajkowski2, Gregory Werner2, Kemin Zhou2, Igor V. Grigoriev2, Daniel S. Rokhsar2, Daniel S. Rokhsar6, Arthur R. Grossman22 
University of California, Los Angeles1, United States Department of Energy2, University of Paris3, Duke University4, University of Massachusetts Medical School5, University of California, Berkeley6, Centre national de la recherche scientifique7, University of California, San Francisco8, Sun Yat-sen University9, University of Tennessee Health Science Center10, University of Minnesota11, Iowa State University12, Genetic Information Research Institute13, Salk Institute for Biological Studies14, Stanford University15, University of Liège16, University of Nebraska–Lincoln17, University of Cambridge18, Washington University in St. Louis19, University of Córdoba (Spain)20, Kyoto University21, Carnegie Institution for Science22, National Autonomous University of Mexico23, University of Münster24, École Normale Supérieure25, University of Melbourne26, University of Paris-Sud27, University of Mainz28, Scripps Research Institute29, Ohio State University30, University of Chicago31, University of Jena32, University of Arizona33, Louisiana State University34, University of New Brunswick35, University College London36, University of Potsdam37, Delaware Biotechnology Institute38, Boyce Thompson Institute for Plant Research39, Macquarie University40, Oklahoma State University Center for Health Sciences41, İzmir University of Economics42, Academy of Sciences of the Czech Republic43, Charles University in Prague44, St. Edward's University45, University of Puget Sound46, Hokkaido University47, Tsinghua University48, Washington State University49, Appalachian State University50, Marquette University51
12 Oct 2007-Science
TL;DR: Analyses of the Chlamydomonas genome advance the understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella.
Abstract: Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the approximately 120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella.

2,554 citations

Journal ArticleDOI
TL;DR: Although the loss of muscle mass is associated with the decline in strength in older adults, this strength decline is much more rapid than the concomitant loss of Muscle mass, suggesting a decline in muscle quality.
Abstract: BACKGROUND: The loss of muscle mass is considered to be a major determinant of strength loss in aging. However, large-scale longitudinal studies examining the association between the loss of mass and strength in older adults are lacking. METHODS: Three-year changes in muscle mass and strength were determined in 1880 older adults in the Health, Aging and Body Composition Study. Knee extensor strength was measured by isokinetic dynamometry. Whole body and appendicular lean and fat mass were assessed by dual-energy x-ray absorptiometry and computed tomography. RESULTS: Both men and women lost strength, with men losing almost twice as much strength as women. Blacks lost about 28% more strength than did whites. Annualized rates of leg strength decline (3.4% in white men, 4.1% in black men, 2.6% in white women, and 3.0% in black women) were about three times greater than the rates of loss of leg lean mass ( approximately 1% per year). The loss of lean mass, as well as higher baseline strength, lower baseline leg lean mass, and older age, was independently associated with strength decline in both men and women. However, gain of lean mass was not accompanied by strength maintenance or gain (ss coefficients; men, -0.48 +/- 4.61, p =.92, women, -1.68 +/- 3.57, p =.64). CONCLUSIONS: Although the loss of muscle mass is associated with the decline in strength in older adults, this strength decline is much more rapid than the concomitant loss of muscle mass, suggesting a decline in muscle quality. Moreover, maintaining or gaining muscle mass does not prevent aging-associated declines in muscle strength.

2,266 citations

Journal ArticleDOI
TL;DR: Results suggest that endogenous nitric oxide may function as a modulator of vascular smooth muscle cell mitogenesis and proliferation, by a cGMP-mediated mechanism.
Abstract: Endothelium-derived relaxing factor has been recently identified as nitric oxide. The purpose of this study was to determine if vasodilator drugs that generate nitric oxide inhibit vascular smooth muscle mitogenesis and proliferation in culture. Three chemically dissimilar vasodilators, sodium nitroprusside, S-nitroso-N-acetylpenicillamine and isosorbide dinitrate, dose-dependently inhibited serum-induced thymidine incorporation by rat aortic smooth muscle cells. Moreover, 8-bromo-cGMP mimicked the antimitogenic effect of the nitric oxide-generating drugs. The antimitogenic effect of S-nitroso-N-acetylpenicillamine was inhibited by hemoglobin and potentiated by superoxide dismutase, supporting the view that nitric oxide was the ultimate effector. Sodium nitroprusside and S-nitroso-N-acetylpenicillamine significantly decreased the proliferation of vascular smooth muscle cells. Moreover, the inhibition of mitogenesis and proliferation was shown to be independent of cell damage, as documented by several criteria of cell viability. These results suggest that endogenous nitric oxide may function as a modulator of vascular smooth muscle cell mitogenesis and proliferation, by a cGMP-mediated mechanism.

2,227 citations

Journal ArticleDOI
02 Sep 1999-Nature
TL;DR: It is shown that the Akt serine–threonine kinase is involved in the activation of NF-κB by tumour necrosis factor (TNF), and that Akt is part of a signalling pathway that is necessary for inducing key immune and inflammatory responses.
Abstract: Activation of the nuclear transcription factor NF-kappaB by inflammatory cytokines requires the successive action of NF-kappaB-inducing kinase (NIK) and an IKB-kinase (IKK) complex composed of IKKalpha and IKKbeta. Here we show that the Akt serine-threonine kinase is involved in the activation of NF-kappaB by tumour necrosis factor (TNF). TNF activates phosphatidylinositol-3-OH kinase (PI(3)K) and its downstream target Akt (protein kinase B). Wortmannin (a PI(3)K inhibitor), dominant-negative PI(3)K or kinase-dead Akt inhibits TNF-mediated NF-kappaB activation. Constitutively active Akt induces NF-kappaB activity and this effect is blocked by dominant-negative NIK. Conversely, NIK activates NF-kappaB and this is blocked by kinase-dead Akt. Thus, both Akt and NIK are necessary for TNF activation of NF-kappaB. Akt mediates IKKalpha phosphorylation at threonine 23. Mutation of this amino acid blocks phosphorylation by Akt or TNF and activation of NF-kappaB. These findings indicate that Akt is part of a signalling pathway that is necessary for inducing key immune and inflammatory responses.

2,205 citations


Authors

Showing all 15827 results

NameH-indexPapersCitations
George P. Chrousos1691612120752
Steven N. Blair165879132929
Bruce L. Miller1631153115975
Ralph A. DeFronzo160759132993
Frank J. Gonzalez160114496971
Robert G. Webster15884390776
Anne B. Newman15090299255
Ching-Hon Pui14580572146
Barton F. Haynes14491179014
Yoshihiro Kawaoka13988375087
Seth M. Steinberg13793680148
Richard J. Johnson13788072201
Kristine Yaffe13679472250
Leslie L. Robison13185464373
Gerardo Heiss12862369393
Network Information
Related Institutions (5)
University of Alabama at Birmingham
86.7K papers, 3.9M citations

97% related

Baylor College of Medicine
94.8K papers, 5M citations

97% related

Johns Hopkins University School of Medicine
79.2K papers, 4.7M citations

97% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

96% related

University of California, San Francisco
186.2K papers, 12M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202338
2022195
20211,699
20201,503
20191,401
20181,292