scispace - formally typeset
Search or ask a question
Institution

University of Virginia

EducationCharlottesville, Virginia, United States
About: University of Virginia is a education organization based out in Charlottesville, Virginia, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 52543 authors who have published 113268 publications receiving 5220506 citations. The organization is also known as: U of V & UVa.


Papers
More filters
Journal ArticleDOI
22 Dec 2005-Nature
TL;DR: It is shown that HP1α, -β, and -γ are released from chromatin during the M phase of the cell cycle, even though tri-methylation levels of histone H3 lysine 9 remain unchanged, and a regulatory mechanism of protein–protein interactions is established through a combinatorial readout of two adjacent post-translational modifications: a stable methylation and a dynamic phosphorylation mark.
Abstract: Tri-methylation of histone H3 lysine 9 is important for recruiting heterochromatin protein 1 (HP1) to discrete regions of the genome, thereby regulating gene expression, chromatin packaging and heterochromatin formation Here we show that HP1α, -β, and -γ are released from chromatin during the M phase of the cell cycle, even though tri-methylation levels of histone H3 lysine 9 remain unchanged However, the additional, transient modification of histone H3 by phosphorylation of serine 10 next to the more stable methyl-lysine 9 mark is sufficient to eject HP1 proteins from their binding sites Inhibition or depletion of the mitotic kinase Aurora B, which phosphorylates serine 10 on histone H3, causes retention of HP1 proteins on mitotic chromosomes, suggesting that H3 serine 10 phosphorylation is necessary for the dissociation of HP1 from chromatin in M phase These findings establish a regulatory mechanism of protein–protein interactions, through a combinatorial readout of two adjacent post-translational modifications: a stable methylation and a dynamic phosphorylation mark

990 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyzed the term structure of interest rates during the monetary experiment of October 1979 and concluded that the expectation hypothesis holds up fairly well for these data, once the recognition by bond traders of changes in regime is taken into account.

988 citations

Journal ArticleDOI
TL;DR: This paper reviewed evidence for climate change over the past several millennia from instrumental and high-resolution climate "proxy" data sources and climate modeling studies and concluded that late 20th century warmth is unprecedented at hemispheric and, likely, global scales.
Abstract: [1] We review evidence for climate change over the past several millennia from instrumental and high-resolution climate “proxy” data sources and climate modeling studies. We focus on changes over the past 1 to 2 millennia. We assess reconstructions and modeling studies analyzing a number of different climate fields, including atmospheric circulation diagnostics, precipitation, and drought. We devote particular attention to proxy-based reconstructions of temperature patterns in past centuries, which place recent large-scale warming in an appropriate longer-term context. Our assessment affirms the conclusion that late 20th century warmth is unprecedented at hemispheric and, likely, global scales. There is more tentative evidence that particular modes of climate variability, such as the El Nino/Southern Oscillation and the North Atlantic Oscillation, may have exhibited late 20th century behavior that is anomalous in a long-term context. Regional conclusions, particularly for the Southern Hemisphere and parts of the tropics where high-resolution proxy data are sparse, are more circumspect. The dramatic differences between regional and hemispheric/global past trends, and the distinction between changes in surface temperature and precipitation/drought fields, underscore the limited utility in the use of terms such as the “Little Ice Age” and “Medieval Warm Period” for describing past climate epochs during the last millennium. Comparison of empirical evidence with proxy-based reconstructions demonstrates that natural factors appear to explain relatively well the major surface temperature changes of the past millennium through the 19th century (including hemispheric means and some spatial patterns). Only anthropogenic forcing of climate, however, can explain the recent anomalous warming in the late 20th century.

987 citations

Journal ArticleDOI
TL;DR: In this article, a short channel High Electron Mobility Transistor (HEMT) has a resonance response to electromagnetic radiation at the plasma oscillation frequencies of the two dimensional electrons in the device.
Abstract: We show that a short channel High Electron Mobility Transistor (HEMT) has a resonance response to electromagnetic radiation at the plasma oscillation frequencies of the two dimensional electrons in the device. This response can be used for new types of detectors, mixers, and multipliers. These devices should operate at much higher frequencies than conventional, transit-time limited devices, since the plasma waves propagate much faster than electrons. The responsivities of such devices may greatly exceed the responsivities of Schottky diodes currently used as detectors and mixers in the terahertz range. A long channel HEMT has a nonresonant response to electromagnetic radiation and can be used as a broadband detector for frequencies up to several tens of terahertz.

986 citations

Journal ArticleDOI
TL;DR: The HotSpot compact thermal modeling approach is especially well suited for preregister transfer level (RTL) and presynthesis thermal analysis and is able to provide detailed static and transient temperature information across the die and the package, as it is also computationally efficient.
Abstract: This paper presents HotSpot-a modeling methodology for developing compact thermal models based on the popular stacked-layer packaging scheme in modern very large-scale integration systems. In addition to modeling silicon and packaging layers, HotSpot includes a high-level on-chip interconnect self-heating power and thermal model such that the thermal impacts on interconnects can also be considered during early design stages. The HotSpot compact thermal modeling approach is especially well suited for preregister transfer level (RTL) and presynthesis thermal analysis and is able to provide detailed static and transient temperature information across the die and the package, as it is also computationally efficient.

985 citations


Authors

Showing all 53083 results

NameH-indexPapersCitations
Joan Massagué189408149951
Michael Rutter188676151592
Gordon B. Mills1871273186451
Ralph Weissleder1841160142508
Gonçalo R. Abecasis179595230323
Jie Zhang1784857221720
John R. Yates1771036129029
John A. Rogers1771341127390
Bradley Cox1692150156200
Mika Kivimäki1661515141468
Hongfang Liu1662356156290
Carl W. Cotman165809105323
Ralph A. DeFronzo160759132993
Elio Riboli1581136110499
Dan R. Littman157426107164
Network Information
Related Institutions (5)
Columbia University
224K papers, 12.8M citations

96% related

University of Pennsylvania
257.6K papers, 14.1M citations

96% related

University of Michigan
342.3K papers, 17.6M citations

96% related

University of Washington
305.5K papers, 17.7M citations

96% related

Stanford University
320.3K papers, 21.8M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023189
2022783
20215,566
20205,600
20195,001
20184,586