scispace - formally typeset
Search or ask a question
Institution

University of Virginia

EducationCharlottesville, Virginia, United States
About: University of Virginia is a education organization based out in Charlottesville, Virginia, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 52543 authors who have published 113268 publications receiving 5220506 citations. The organization is also known as: U of V & UVa.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a q-sort technique was used to identify core perceived attributes of four sample social media influencers, and a better understanding of the perceived personality of SMIs provides tools for optimizing an organization's SMI capital.

673 citations

Journal ArticleDOI
TL;DR: It is suggested that transcript abundance of roughly one-third of expressed A. thaliana genes is circadian regulated, suggesting that how the circadian clock affects plant growth and leads to improved fitness is understood.
Abstract: As nonmotile organisms, plants must rapidly adapt to ever-changing environmental conditions, including those caused by daily light/dark cycles. One important mechanism for anticipating and preparing for such predictable changes is the circadian clock. Nearly all organisms have circadian oscillators that, when they are in phase with the Earth's rotation, provide a competitive advantage. In order to understand how circadian clocks benefit plants, it is necessary to identify the pathways and processes that are clock controlled. We have integrated information from multiple circadian microarray experiments performed on Arabidopsis thaliana in order to better estimate the fraction of the plant transcriptome that is circadian regulated. Analyzing the promoters of clock-controlled genes, we identified circadian clock regulatory elements correlated with phase-specific transcript accumulation. We have also identified several physiological pathways enriched for clock-regulated changes in transcript abundance, suggesting they may be modulated by the circadian clock. Our analysis suggests that transcript abundance of roughly one-third of expressed A. thaliana genes is circadian regulated. We found four promoter elements, enriched in the promoters of genes with four discrete phases, which may contribute to the time-of-day specific changes in the transcript abundance of these genes. Clock-regulated genes are over-represented among all of the classical plant hormone and multiple stress response pathways, suggesting that all of these pathways are influenced by the circadian clock. Further exploration of the links between the clock and these pathways will lead to a better understanding of how the circadian clock affects plant growth and leads to improved fitness.

671 citations

Journal ArticleDOI
TL;DR: A series of mathematical models of increasing complexity, which incorporate target cell limitation and the innate interferon response, are utilized to examine influenza A virus kinetics in the upper respiratory tracts of experimentally infected adults to suggest that antiviral treatments have a large hurdle to overcome in moderating symptoms and limiting infectiousness.
Abstract: Currently, little is known about the viral kinetics of influenza A during infection within an individual. We utilize a series of mathematical models of increasing complexity, which incorporate target cell limitation and the innate interferon response, to examine influenza A virus kinetics in the upper respiratory tracts of experimentally infected adults. The models were fit to data from an experimental H1N1 influenza A/Hong Kong/123/77 infection and suggest that it is important to include the eclipse phase of the viral life cycle in viral dynamic models. Doing so, we estimate that after a delay of approximately 6 h, infected cells begin producing influenza virus and continue to do so for approximately 5 h. The average lifetime of infected cells is approximately 11 h, and the half-life of free infectious virus is approximately 3 h. We calculated the basic reproductive number, R(0), which indicated that a single infected cell could produce approximately 22 new productive infections. This suggests that antiviral treatments have a large hurdle to overcome in moderating symptoms and limiting infectiousness and that treatment has to be initiated as early as possible. For about 50% of patients, the curve of viral titer versus time has two peaks. This bimodal behavior can be explained by incorporating the antiviral effects of interferon into the model. Our model also compared well to an additional data set on viral titer after experimental infection and treatment with the neuraminidase inhibitor zanamivir, which suggests that such models may prove useful in estimating the efficacies of different antiviral therapies for influenza A infection.

670 citations

Journal ArticleDOI
TL;DR: This work has shown that during late mitosis and G1, replication origins are 'licensed' for replication by loading the minichromosome maintenance (Mcm) 2–7 proteins to form a pre-replicative complex.
Abstract: To ensure its duplication, chromosomal DNA must be precisely duplicated in each cell cycle, with no sections left unreplicated, and no sections replicated more than once. Eukaryotic cells achieve this by dividing replication into two non-overlapping phases. During late mitosis and G1, replication origins are 'licensed' for replication by loading the minichromosome maintenance (Mcm) 2-7 proteins to form a pre-replicative complex. Mcm2-7 proteins are then essential for initiating and elongating replication forks during S phase. Recent data have provided biochemical and structural insight into the process of replication licensing and the mechanisms that regulate it during the cell cycle.

670 citations

Journal ArticleDOI
TL;DR: It is found that IL-6 and IFN-alpha levels in nasal lavage fluids peaked early (day 2) and correlated directly with viral titers, temperature, mucus production, and symptom scores, which implicate IL- 6 and IFn-alpha as key factors both in symptom formation and host defense in influenza.
Abstract: To further understand the role of cytokine responses in symptom formation and host defenses in influenza infection, we determined the levels of IL-1beta, IL-2, IL-6, IL-8, IFN-alpha, TGF-beta, and TNF-alpha in nasal lavage fluid, plasma, and serum obtained serially from 19 volunteers experimentally infected with influenza A/Texas/36/91 (H1N1) and correlated these levels with various measures of infection and illness severity. We found that IL-6 and IFN-alpha levels in nasal lavage fluids peaked early (day 2) and correlated directly with viral titers, temperature, mucus production, and symptom scores. IL-6 elevations were also found in the circulation at this time point. In contrast, TNF-alpha responses peaked later (day 3 in plasma, day 4 in nasal fluids), when viral shedding and symptoms were subsiding. Similarly, IL-8 peaked late in the illness course (days 4-6) and correlated only with lower respiratory symptoms, which also occurred late. None of IL-1beta, IL-2, or TGF-beta levels increased significantly. These data implicate IL-6 and IFN-alpha as key factors both in symptom formation and host defense in influenza.

670 citations


Authors

Showing all 53083 results

NameH-indexPapersCitations
Joan Massagué189408149951
Michael Rutter188676151592
Gordon B. Mills1871273186451
Ralph Weissleder1841160142508
Gonçalo R. Abecasis179595230323
Jie Zhang1784857221720
John R. Yates1771036129029
John A. Rogers1771341127390
Bradley Cox1692150156200
Mika Kivimäki1661515141468
Hongfang Liu1662356156290
Carl W. Cotman165809105323
Ralph A. DeFronzo160759132993
Elio Riboli1581136110499
Dan R. Littman157426107164
Network Information
Related Institutions (5)
Columbia University
224K papers, 12.8M citations

96% related

University of Pennsylvania
257.6K papers, 14.1M citations

96% related

University of Michigan
342.3K papers, 17.6M citations

96% related

University of Washington
305.5K papers, 17.7M citations

96% related

Stanford University
320.3K papers, 21.8M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023189
2022783
20215,566
20205,600
20195,001
20184,586