scispace - formally typeset
Search or ask a question
Institution

University of Warsaw

EducationWarsaw, Poland
About: University of Warsaw is a education organization based out in Warsaw, Poland. It is known for research contribution in the topics: Population & Large Hadron Collider. The organization has 20832 authors who have published 56617 publications receiving 1185084 citations. The organization is also known as: Uniwersytet Warszawski & Warsaw University.


Papers
More filters
Journal ArticleDOI
Nabila Aghanim1, Yashar Akrami2, Yashar Akrami3, Yashar Akrami4  +213 moreInstitutions (66)
TL;DR: In this article, the legacy Planck cosmic microwave background (CMB) likelihoods derived from the 2018 data release are described, with a hybrid method using different approximations at low (l ǫ ≥ 30) multipoles, implementing several methodological and data-analysis refinements compared to previous releases.
Abstract: We describe the legacy Planck cosmic microwave background (CMB) likelihoods derived from the 2018 data release. The overall approach is similar in spirit to the one retained for the 2013 and 2015 data release, with a hybrid method using different approximations at low (l ≥ 30) multipoles, implementing several methodological and data-analysis refinements compared to previous releases. With more realistic simulations, and better correction and modelling of systematic effects, we can now make full use of the CMB polarization observed in the High Frequency Instrument (HFI) channels. The low-multipole EE cross-spectra from the 100 GHz and 143 GHz data give a constraint on the ΛCDM reionization optical-depth parameter τ to better than 15% (in combination with the TT low-l data and the high-l temperature and polarization data), tightening constraints on all parameters with posterior distributions correlated with τ . We also update the weaker constraint on τ from the joint TEB likelihood using the Low Frequency Instrument (LFI) channels, which was used in 2015 as part of our baseline analysis. At higher multipoles, the CMB temperature spectrum and likelihood are very similar to previous releases. A better model of the temperature-to-polarization leakage and corrections for the effective calibrations of the polarization channels (i.e., the polarization efficiencies) allow us to make full use of polarization spectra, improving the ΛCDM constraints on the parameters θ MC , ω c , ω b , and H 0 by more than 30%, and ns by more than 20% compared to TT-only constraints. Extensive tests on the robustness of the modelling of the polarization data demonstrate good consistency, with some residual modelling uncertainties. At high multipoles, we are now limited mainly by the accuracy of the polarization efficiency modelling. Using our various tests, simulations, and comparison between different high-multipole likelihood implementations, we estimate the consistency of the results to be better than the 0.5 σ level on the ΛCDM parameters, as well as classical single-parameter extensions for the joint likelihood (to be compared to the 0.3 σ levels we achieved in 2015 for the temperature data alone on ΛCDM only). Minor curiosities already present in the previous releases remain, such as the differences between the best-fit ΛCDM parameters for the l > 800 ranges of the power spectrum, or the preference for more smoothing of the power-spectrum peaks than predicted in ΛCDM fits. These are shown to be driven by the temperature power spectrum and are not significantly modified by the inclusion of the polarization data. Overall, the legacy Planck CMB likelihoods provide a robust tool for constraining the cosmological model and represent a reference for future CMB observations.

523 citations

Journal ArticleDOI
TL;DR: Melatonin's functions as an antioxidant include: a), direct free radical scavenging, b), stimulation of antioxidative enzymes, c), increasing the efficiency of mitochondrial oxidative phosphorylation and reducing electron leakage (thereby lowering free radical generation), and 3), augmenting the efficiencyof other antioxidants.
Abstract: This brief resume enumerates the multiple actions of melatonin as an antioxidant. This indoleamine is produced in the vertebrate pineal gland, the retina and possibly some other organs. Additionally, however, it is found in invertebrates, bacteria, unicellular organisms as well as in plants, all of which do not have a pineal gland. Melatonin's functions as an antioxidant include: a), direct free radical scavenging, b), stimulation of antioxidative enzymes, c), increasing the efficiency of mitochondrial oxidative phosphorylation and reducing electron leakage (thereby lowering free radical generation), and 3), augmenting the efficiency of other antioxidants. There may be other functions of melatonin, yet undiscovered, which enhance its ability to protect against molecular damage by oxygen and nitrogen-based toxic reactants. Numerous in vitro and in vivo studies have documented the ability of both physiological and pharmacological concentrations to melatonin to protect against free radical destruction. Furthermore, clinical tests utilizing melatonin have proven highly successful; because of the positive outcomes of these studies, melatonin's use in disease states and processes where free radical damage is involved should be increased.

522 citations

Journal ArticleDOI
Y. Ashie1, J. Hosaka1, K. Ishihara1, Yoshitaka Itow1, J. Kameda1, Yusuke Koshio1, A. Minamino1, C. Mitsuda1, M. Miura1, Shigetaka Moriyama1, Masayuki Nakahata1, Toshio Namba1, R. Nambu1, Y. Obayashi1, Masato Shiozawa1, Yasunari Suzuki1, Y. Takeuchi1, K. Taki1, Shinya Yamada1, Masaki Ishitsuka1, Takaaki Kajita1, K. Kaneyuki1, Shoei Nakayama1, A. Okada1, Ko Okumura1, T. Ooyabu1, C. Saji1, Y. Takenaga1, Shantanu Desai2, E. Kearns2, S. Likhoded2, J. L. Stone2, L. R. Sulak2, C. W. Walter2, W. Wang2, M. Goldhaber3, David William Casper4, J. P. Cravens4, W. Gajewski4, W. R. Kropp4, D. W. Liu4, S. Mine4, Michael B. Smy4, H. W. Sobel4, C. W. Sterner4, Mark R. Vagins4, K. S. Ganezer5, John Hill5, W. E. Keig5, J. S. Jang6, J. Y. Kim6, I. T. Lim6, R. W. Ellsworth7, S. Tasaka8, G. Guillian, A. Kibayashi, John G. Learned, S. Matsuno, D. Takemori, M. D. Messier9, Y. Hayato, A. K. Ichikawa, T. Ishida, T. Ishii, T. Iwashita, T. Kobayashi, Tomoyuki Maruyama, K. Nakamura, K. Nitta, Yuichi Oyama, Makoto Sakuda, Y. Totsuka, Atsumu Suzuki10, Masaya Hasegawa11, K. Hayashi11, T. Inagaki11, I. Kato11, H. Maesaka11, Taichi Morita11, Tsuyoshi Nakaya11, K. Nishikawa11, T. Sasaki11, S. Ueda11, Shoji Yamamoto11, Todd Haines12, Todd Haines4, S. Dazeley13, S. Hatakeyama13, R. Svoboda13, E. Blaufuss14, J. A. Goodman14, G. W. Sullivan14, D. Turcan14, Kate Scholberg15, Alec Habig16, Y. Fukuda17, C. K. Jung18, T. Kato18, Katsuhiro Kobayashi18, Magdalena Malek18, C. Mauger18, C. McGrew18, A. Sarrat18, E. Sharkey18, C. Yanagisawa18, T. Toshito19, Kazumasa Miyano20, N. Tamura20, J. Ishii21, Y. Kuno21, Y. Nagashima21, M. Takita21, Minoru Yoshida21, S. B. Kim22, J. Yoo22, H. Okazawa, T. Ishizuka23, Y. Choi24, H. Seo24, Y. Gando25, Takehisa Hasegawa25, Kunio Inoue25, J. Shirai25, A. Suzuki25, Masatoshi Koshiba1, Y. Nakajima26, Kyoshi Nishijima26, T. Harada27, Hirokazu Ishino27, R. Nishimura27, Y. Watanabe27, D. Kielczewska4, D. Kielczewska28, J. Zalipska28, H. G. Berns29, R. Gran29, K. K. Shiraishi29, A. L. Stachyra29, K. Washburn29, R. J. Wilkes29 
TL;DR: A dip in the L/E distribution was observed in the data, as predicted from the sinusoidal flavor transition probability of neutrino oscillation, which constrained nu(micro)<-->nu(tau) neutrinos oscillation parameters.
Abstract: Muon neutrino disappearance probability as a function of neutrino flight length $L$ over neutrino energy $E$ was studied. A dip in the $L/E$ distribution was observed in the data, as predicted from the sinusoidal flavor transition probability of neutrino oscillation. The observed $L/E$ distribution constrained ${\ensuremath{ u}}_{\ensuremath{\mu}}\ensuremath{\leftrightarrow}{\ensuremath{ u}}_{\ensuremath{\tau}}$ neutrino oscillation parameters; $1.9\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}3}l\ensuremath{\Delta}{m}^{2}l3.0\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}3}\text{ }\text{ }{\mathrm{e}\mathrm{V}}^{2}$ and ${sin }^{2}2\ensuremath{\theta}g0.90$ at 90% confidence level.

522 citations

Journal ArticleDOI
R. Adam1, Peter A. R. Ade2, Nabila Aghanim3, M. I. R. Alves4  +281 moreInstitutions (69)
TL;DR: In this paper, the authors consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of full-sky astrophysical components maps.
Abstract: Planck has mapped the microwave sky in temperature over nine frequency bands between 30 and 857 GHz and in polarization over seven frequency bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of full-sky astrophysical component maps. Component separation dedicated to cosmic microwave background (CMB) reconstruction is described in a companion paper. For the temperature analysis, we combine the Planck observations with the 9-yr Wilkinson Microwave Anisotropy Probe (WMAP) sky maps and the Haslam et al. 408 MHz map, to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided for each component, with an angular resolution varying between 7.5 and 1deg. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4μK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are internal degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these degeneracies. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100–353 GHz bands on large angular scales in the form of temperature-to-polarization leakage, uncertainties in the analogue-to-digital conversion, and corrections for the very long time constant of the bolometer detectors, all of which are expected to improve in the near future.

515 citations

Journal ArticleDOI
S. Fukuda1, Y. Fukuda1, M. Ishitsuka1, Yoshitaka Itow1, Takaaki Kajita1, J. Kameda1, K. Kaneyuki1, K. Kobayashi1, Yusuke Koshio1, M. Miura1, S. Moriyama1, Masayuki Nakahata1, S. Nakayama1, A. Okada1, N. Sakurai1, Masato Shiozawa1, Yoshihiro Suzuki1, H. Takeuchi1, Y. Takeuchi1, T. Toshito1, Y. Totsuka1, Shoichi Yamada1, Shantanu Desai2, M. Earl2, E. Kearns2, M. D. Messier2, Kate Scholberg3, Kate Scholberg2, J. L. Stone2, L. R. Sulak2, C. W. Walter2, M. Goldhaber4, T. Barszczak5, David William Casper5, W. Gajewski5, W. R. Kropp5, S. Mine5, D. W. Liu5, L. R. Price5, M. B. Smy5, Henry W. Sobel5, M. R. Vagins5, K. S. Ganezer6, W. E. Keig6, R. W. Ellsworth7, S. Tasaka8, A. Kibayashi, John G. Learned, S. Matsuno, D. Takemori, Y. Hayato, T. Ishii, Takashi Kobayashi, Koji Nakamura, Y. Obayashi, Y. Oyama, A. Sakai, Makoto Sakuda, M. Kohama9, Atsumu Suzuki9, T. Inagaki10, Tsuyoshi Nakaya10, K. Nishikawa10, Todd Haines11, Todd Haines5, E. Blaufuss12, E. Blaufuss13, S. Dazeley12, K. B. Lee14, K. B. Lee12, R. Svoboda12, J. A. Goodman13, G. Guillian13, G. W. Sullivan13, D. Turcan13, Alec Habig15, J. Hill16, C. K. Jung16, K. Martens17, K. Martens16, Magdalena Malek16, C. Mauger16, C. McGrew16, E. Sharkey16, B. Viren16, C. Yanagisawa16, C. Mitsuda18, K. Miyano18, C. Saji18, T. Shibata18, Y. Kajiyama19, Y. Nagashima19, K. Nitta19, M. Takita19, Minoru Yoshida19, Heekyong Kim20, Soo-Bong Kim20, J. Yoo20, H. Okazawa, T. Ishizuka21, M. Etoh22, Y. Gando22, Takehisa Hasegawa22, Kunio Inoue22, K. Ishihara22, Tomoyuki Maruyama22, J. Shirai22, A. Suzuki22, Masatoshi Koshiba1, Y. Hatakeyama23, Y. Ichikawa23, M. Koike23, Kyoshi Nishijima23, H. Fujiyasu24, Hirokazu Ishino24, M. Morii24, Y. Watanabe24, U. Golebiewska25, D. Kielczewska5, D. Kielczewska25, S. C. Boyd26, A. L. Stachyra26, R. J. Wilkes26, K. K. Young26 
TL;DR: The absence of significant zenith angle variation and spectrum distortion places strong constraints on neutrino mixing and mass difference in a flux-independent way, and two allowed regions at large mixing are found.
Abstract: We report the result of a search for neutrino oscillations using precise measurements of the recoil electron energy spectrum and zenith angle variations of the solar neutrino flux from 1258 days of neutrino-electron scattering data in Super-Kamiokande The absence of significant zenith angle variation and spectrum distortion places strong constraints on neutrino mixing and mass difference in a flux-independent way Using the Super-Kamiokande flux measurement in addition, two allowed regions at large mixing are found

515 citations


Authors

Showing all 21191 results

NameH-indexPapersCitations
Alexander Malakhov139148699556
Emmanuelle Perez138155099016
Piotr Zalewski135138889976
Krzysztof Doroba133144089029
Hector F. DeLuca133130369395
Krzysztof M. Gorski132380105912
Igor Golutvin131128288559
Jan Krolikowski131128983994
Michal Szleper130123882036
Anatoli Zarubin129120486435
Malgorzata Kazana129117581106
Artur Kalinowski129116281906
Predrag Milenovic129118581144
Marcin Konecki128117879392
Karol Bunkowski128119279455
Network Information
Related Institutions (5)
Centre national de la recherche scientifique
382.4K papers, 13.6M citations

90% related

University of Paris-Sud
52.7K papers, 2.1M citations

90% related

ETH Zurich
122.4K papers, 5.1M citations

90% related

École Normale Supérieure
99.4K papers, 3M citations

89% related

Max Planck Society
406.2K papers, 19.5M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023176
2022619
20212,882
20203,208
20193,130
20183,164