scispace - formally typeset
Search or ask a question

Showing papers by "University of Warsaw published in 2020"


Journal ArticleDOI
Nabila Aghanim1, Yashar Akrami2, Yashar Akrami3, Yashar Akrami4  +229 moreInstitutions (70)
TL;DR: In this article, the authors present cosmological parameter results from the full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction.
Abstract: We present cosmological parameter results from the final full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction Compared to the 2015 results, improved measurements of large-scale polarization allow the reionization optical depth to be measured with higher precision, leading to significant gains in the precision of other correlated parameters Improved modelling of the small-scale polarization leads to more robust constraints on manyparameters,withresidualmodellinguncertaintiesestimatedtoaffectthemonlyatthe05σlevelWefindgoodconsistencywiththestandard spatially-flat6-parameter ΛCDMcosmologyhavingapower-lawspectrumofadiabaticscalarperturbations(denoted“base ΛCDM”inthispaper), from polarization, temperature, and lensing, separately and in combination A combined analysis gives dark matter density Ωch2 = 0120±0001, baryon density Ωbh2 = 00224±00001, scalar spectral index ns = 0965±0004, and optical depth τ = 0054±0007 (in this abstract we quote 68% confidence regions on measured parameters and 95% on upper limits) The angular acoustic scale is measured to 003% precision, with 100θ∗ = 10411±00003Theseresultsareonlyweaklydependentonthecosmologicalmodelandremainstable,withsomewhatincreasederrors, in many commonly considered extensions Assuming the base-ΛCDM cosmology, the inferred (model-dependent) late-Universe parameters are: HubbleconstantH0 = (674±05)kms−1Mpc−1;matterdensityparameterΩm = 0315±0007;andmatterfluctuationamplitudeσ8 = 0811±0006 We find no compelling evidence for extensions to the base-ΛCDM model Combining with baryon acoustic oscillation (BAO) measurements (and consideringsingle-parameterextensions)weconstraintheeffectiveextrarelativisticdegreesoffreedomtobe Neff = 299±017,inagreementwith the Standard Model prediction Neff = 3046, and find that the neutrino mass is tightly constrained toPmν < 012 eV The CMB spectra continue to prefer higher lensing amplitudesthan predicted in base ΛCDM at over 2σ, which pulls some parameters that affect thelensing amplitude away from the ΛCDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAOdataThejointconstraintwithBAOmeasurementsonspatialcurvatureisconsistentwithaflatuniverse, ΩK = 0001±0002Alsocombining with Type Ia supernovae (SNe), the dark-energy equation of state parameter is measured to be w0 = −103±003, consistent with a cosmological constant We find no evidence for deviations from a purely power-law primordial spectrum, and combining with data from BAO, BICEP2, and Keck Array data, we place a limit on the tensor-to-scalar ratio r0002 < 006 Standard big-bang nucleosynthesis predictions for the helium and deuterium abundances for the base-ΛCDM cosmology are in excellent agreement with observations The Planck base-ΛCDM results are in good agreement with BAO, SNe, and some galaxy lensing observations, but in slight tension with the Dark Energy Survey’s combined-probe results including galaxy clustering (which prefers lower fluctuation amplitudes or matter density parameters), and in significant, 36σ, tension with local measurements of the Hubble constant (which prefer a higher value) Simple model extensions that can partially resolve these tensions are not favoured by the Planck data

4,688 citations


Journal ArticleDOI
Yashar Akrami1, Yashar Akrami2, M. Ashdown3, J. Aumont4  +180 moreInstitutions (59)
TL;DR: In this paper, a power-law fit to the angular power spectra of dust polarization at 353 GHz for six nested sky regions covering from 24 to 71 % of the sky is presented.
Abstract: The study of polarized dust emission has become entwined with the analysis of the cosmic microwave background (CMB) polarization. We use new Planck maps to characterize Galactic dust emission as a foreground to the CMB polarization. We present Planck EE, BB, and TE power spectra of dust polarization at 353 GHz for six nested sky regions covering from 24 to 71 % of the sky. We present power-law fits to the angular power spectra, yielding evidence for statistically significant variations of the exponents over sky regions and a difference between the values for the EE and BB spectra. The TE correlation and E/B power asymmetry extend to low multipoles that were not included in earlier Planck polarization papers. We also report evidence for a positive TB dust signal. Combining data from Planck and WMAP, we determine the amplitudes and spectral energy distributions (SEDs) of polarized foregrounds, including the correlation between dust and synchrotron polarized emission, for the six sky regions as a function of multipole. This quantifies the challenge of the component separation procedure required for detecting the reionization and recombination peaks of primordial CMB B modes. The SED of polarized dust emission is fit well by a single-temperature modified blackbody emission law from 353 GHz to below 70 GHz. For a dust temperature of 19.6 K, the mean spectral index for dust polarization is $\beta_{\rm d}^{P} = 1.53\pm0.02 $. By fitting multi-frequency cross-spectra, we examine the correlation of the dust polarization maps across frequency. We find no evidence for decorrelation. If the Planck limit for the largest sky region applies to the smaller sky regions observed by sub-orbital experiments, then decorrelation might not be a problem for CMB experiments aiming at a primordial B-mode detection limit on the tensor-to-scalar ratio $r\simeq0.01$ at the recombination peak.

1,749 citations


Journal ArticleDOI
B. P. Abbott1, R. Abbott1, T. D. Abbott2, Sheelu Abraham3  +1271 moreInstitutions (145)
TL;DR: In 2019, the LIGO Livingston detector observed a compact binary coalescence with signal-to-noise ratio 12.9 and the Virgo detector was also taking data that did not contribute to detection due to a low SINR but were used for subsequent parameter estimation as discussed by the authors.
Abstract: On 2019 April 25, the LIGO Livingston detector observed a compact binary coalescence with signal-to-noise ratio 12.9. The Virgo detector was also taking data that did not contribute to detection due to a low signal-to-noise ratio, but were used for subsequent parameter estimation. The 90% credible intervals for the component masses range from to if we restrict the dimensionless component spin magnitudes to be smaller than 0.05). These mass parameters are consistent with the individual binary components being neutron stars. However, both the source-frame chirp mass and the total mass of this system are significantly larger than those of any other known binary neutron star (BNS) system. The possibility that one or both binary components of the system are black holes cannot be ruled out from gravitational-wave data. We discuss possible origins of the system based on its inconsistency with the known Galactic BNS population. Under the assumption that the signal was produced by a BNS coalescence, the local rate of neutron star mergers is updated to 250-2810.

1,189 citations


Journal ArticleDOI
Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3, Fausto Acernese4  +1334 moreInstitutions (150)
TL;DR: In this paper, the authors reported the observation of a compact binary coalescence involving a 222 −243 M ⊙ black hole and a compact object with a mass of 250 −267 M ⋆ (all measurements quoted at the 90% credible level) The gravitational-wave signal, GW190814, was observed during LIGO's and Virgo's third observing run on 2019 August 14 at 21:10:39 UTC and has a signal-to-noise ratio of 25 in the three-detector network.
Abstract: We report the observation of a compact binary coalescence involving a 222–243 M ⊙ black hole and a compact object with a mass of 250–267 M ⊙ (all measurements quoted at the 90% credible level) The gravitational-wave signal, GW190814, was observed during LIGO's and Virgo's third observing run on 2019 August 14 at 21:10:39 UTC and has a signal-to-noise ratio of 25 in the three-detector network The source was localized to 185 deg2 at a distance of ${241}_{-45}^{+41}$ Mpc; no electromagnetic counterpart has been confirmed to date The source has the most unequal mass ratio yet measured with gravitational waves, ${0112}_{-0009}^{+0008}$, and its secondary component is either the lightest black hole or the heaviest neutron star ever discovered in a double compact-object system The dimensionless spin of the primary black hole is tightly constrained to ≤007 Tests of general relativity reveal no measurable deviations from the theory, and its prediction of higher-multipole emission is confirmed at high confidence We estimate a merger rate density of 1–23 Gpc−3 yr−1 for the new class of binary coalescence sources that GW190814 represents Astrophysical models predict that binaries with mass ratios similar to this event can form through several channels, but are unlikely to have formed in globular clusters However, the combination of mass ratio, component masses, and the inferred merger rate for this event challenges all current models of the formation and mass distribution of compact-object binaries

913 citations


Journal ArticleDOI
Nabila Aghanim1, Yashar Akrami2, Yashar Akrami3, Frederico Arroja4  +251 moreInstitutions (72)
TL;DR: In this paper, the authors present the cosmological legacy of the Planck satellite, which provides the strongest constraints on the parameters of the standard cosmology model and some of the tightest limits available on deviations from that model.
Abstract: The European Space Agency’s Planck satellite, which was dedicated to studying the early Universe and its subsequent evolution, was launched on 14 May 2009. It scanned the microwave and submillimetre sky continuously between 12 August 2009 and 23 October 2013, producing deep, high-resolution, all-sky maps in nine frequency bands from 30 to 857 GHz. This paper presents the cosmological legacy of Planck, which currently provides our strongest constraints on the parameters of the standard cosmological model and some of the tightest limits available on deviations from that model. The 6-parameter ΛCDM model continues to provide an excellent fit to the cosmic microwave background data at high and low redshift, describing the cosmological information in over a billion map pixels with just six parameters. With 18 peaks in the temperature and polarization angular power spectra constrained well, Planck measures five of the six parameters to better than 1% (simultaneously), with the best-determined parameter (θ*) now known to 0.03%. We describe the multi-component sky as seen by Planck, the success of the ΛCDM model, and the connection to lower-redshift probes of structure formation. We also give a comprehensive summary of the major changes introduced in this 2018 release. The Planck data, alone and in combination with other probes, provide stringent constraints on our models of the early Universe and the large-scale structure within which all astrophysical objects form and evolve. We discuss some lessons learned from the Planck mission, and highlight areas ripe for further experimental advances.

879 citations


Journal ArticleDOI
R. Abbott1, T. D. Abbott2, Sheelu Abraham3, Fausto Acernese4  +1332 moreInstitutions (150)
TL;DR: It is inferred that the primary black hole mass lies within the gap produced by (pulsational) pair-instability supernova processes, with only a 0.32% probability of being below 65 M⊙, which can be considered an intermediate mass black hole (IMBH).
Abstract: On May 21, 2019 at 03:02:29 UTC Advanced LIGO and Advanced Virgo observed a short duration gravitational-wave signal, GW190521, with a three-detector network signal-to-noise ratio of 14.7, and an estimated false-alarm rate of 1 in 4900 yr using a search sensitive to generic transients. If GW190521 is from a quasicircular binary inspiral, then the detected signal is consistent with the merger of two black holes with masses of 85_{-14}^{+21} M_{⊙} and 66_{-18}^{+17} M_{⊙} (90% credible intervals). We infer that the primary black hole mass lies within the gap produced by (pulsational) pair-instability supernova processes, with only a 0.32% probability of being below 65 M_{⊙}. We calculate the mass of the remnant to be 142_{-16}^{+28} M_{⊙}, which can be considered an intermediate mass black hole (IMBH). The luminosity distance of the source is 5.3_{-2.6}^{+2.4} Gpc, corresponding to a redshift of 0.82_{-0.34}^{+0.28}. The inferred rate of mergers similar to GW190521 is 0.13_{-0.11}^{+0.30} Gpc^{-3} yr^{-1}.

876 citations


Journal ArticleDOI
TL;DR: This compendium is for established researchers, newcomers, and students alike, highlighting interesting and rewarding problems for the coming years in single-cell data science.
Abstract: The recent boom in microfluidics and combinatorial indexing strategies, combined with low sequencing costs, has empowered single-cell sequencing technology. Thousands-or even millions-of cells analyzed in a single experiment amount to a data revolution in single-cell biology and pose unique data science problems. Here, we outline eleven challenges that will be central to bringing this emerging field of single-cell data science forward. For each challenge, we highlight motivating research questions, review prior work, and formulate open problems. This compendium is for established researchers, newcomers, and students alike, highlighting interesting and rewarding problems for the coming years.

677 citations


Journal ArticleDOI
Nabila Aghanim1, Yashar Akrami2, Yashar Akrami3, Yashar Akrami4  +213 moreInstitutions (66)
TL;DR: In this article, the legacy Planck cosmic microwave background (CMB) likelihoods derived from the 2018 data release are described, with a hybrid method using different approximations at low (l ǫ ≥ 30) multipoles, implementing several methodological and data-analysis refinements compared to previous releases.
Abstract: We describe the legacy Planck cosmic microwave background (CMB) likelihoods derived from the 2018 data release. The overall approach is similar in spirit to the one retained for the 2013 and 2015 data release, with a hybrid method using different approximations at low (l ≥ 30) multipoles, implementing several methodological and data-analysis refinements compared to previous releases. With more realistic simulations, and better correction and modelling of systematic effects, we can now make full use of the CMB polarization observed in the High Frequency Instrument (HFI) channels. The low-multipole EE cross-spectra from the 100 GHz and 143 GHz data give a constraint on the ΛCDM reionization optical-depth parameter τ to better than 15% (in combination with the TT low-l data and the high-l temperature and polarization data), tightening constraints on all parameters with posterior distributions correlated with τ . We also update the weaker constraint on τ from the joint TEB likelihood using the Low Frequency Instrument (LFI) channels, which was used in 2015 as part of our baseline analysis. At higher multipoles, the CMB temperature spectrum and likelihood are very similar to previous releases. A better model of the temperature-to-polarization leakage and corrections for the effective calibrations of the polarization channels (i.e., the polarization efficiencies) allow us to make full use of polarization spectra, improving the ΛCDM constraints on the parameters θ MC , ω c , ω b , and H 0 by more than 30%, and ns by more than 20% compared to TT-only constraints. Extensive tests on the robustness of the modelling of the polarization data demonstrate good consistency, with some residual modelling uncertainties. At high multipoles, we are now limited mainly by the accuracy of the polarization efficiency modelling. Using our various tests, simulations, and comparison between different high-multipole likelihood implementations, we estimate the consistency of the results to be better than the 0.5 σ level on the ΛCDM parameters, as well as classical single-parameter extensions for the joint likelihood (to be compared to the 0.3 σ levels we achieved in 2015 for the temperature data alone on ΛCDM only). Minor curiosities already present in the previous releases remain, such as the differences between the best-fit ΛCDM parameters for the l > 800 ranges of the power spectrum, or the preference for more smoothing of the power-spectrum peaks than predicted in ΛCDM fits. These are shown to be driven by the temperature power spectrum and are not significantly modified by the inclusion of the polarization data. Overall, the legacy Planck CMB likelihoods provide a robust tool for constraining the cosmological model and represent a reference for future CMB observations.

523 citations


Journal ArticleDOI
Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3, Fausto Acernese4  +1330 moreInstitutions (149)
TL;DR: In this article, the authors reported the observation of gravitational waves from a binary-black-hole coalescence during the first two weeks of LIGO and Virgo's third observing run.
Abstract: We report the observation of gravitational waves from a binary-black-hole coalescence during the first two weeks of LIGO’s and Virgo’s third observing run. The signal was recorded on April 12, 2019 at 05∶30∶44 UTC with a network signal-to-noise ratio of 19. The binary is different from observations during the first two observing runs most notably due to its asymmetric masses: a ∼30 M⊙ black hole merged with a ∼8 M⊙ black hole companion. The more massive black hole rotated with a dimensionless spin magnitude between 0.22 and 0.60 (90% probability). Asymmetric systems are predicted to emit gravitational waves with stronger contributions from higher multipoles, and indeed we find strong evidence for gravitational radiation beyond the leading quadrupolar order in the observed signal. A suite of tests performed on GW190412 indicates consistency with Einstein’s general theory of relativity. While the mass ratio of this system differs from all previous detections, we show that it is consistent with the population model of stellar binary black holes inferred from the first two observing runs.

507 citations


Journal ArticleDOI
Nabila Aghanim1, Yashar Akrami2, Yashar Akrami3, Yashar Akrami4  +202 moreInstitutions (63)
TL;DR: In this article, the authors presented an extensive set of tests of the robustness of the lensing-potential power spectrum, and constructed a minimum-variance estimator likelihood over lensing multipoles 8.
Abstract: We present measurements of the cosmic microwave background (CMB) lensing potential using the final Planck 2018 temperature and polarization data. Using polarization maps filtered to account for the noise anisotropy, we increase the significance of the detection of lensing in the polarization maps from 5σ to 9σ . Combined with temperature, lensing is detected at 40σ . We present an extensive set of tests of the robustness of the lensing-potential power spectrum, and construct a minimum-variance estimator likelihood over lensing multipoles 8 ≤ L ≤ 400 (extending the range to lower L compared to 2015), which we use to constrain cosmological parameters. We find good consistency between lensing constraints and the results from the Planck CMB power spectra within the ΛCDM model. Combined with baryon density and other weak priors, the lensing analysis alone constrains (1σ errors). Also combining with baryon acoustic oscillation data, we find tight individual parameter constraints, σ 8 = 0.811 ± 0.019, , and . Combining with Planck CMB power spectrum data, we measure σ 8 to better than 1% precision, finding σ 8 = 0.811 ± 0.006. CMB lensing reconstruction data are complementary to galaxy lensing data at lower redshift, having a different degeneracy direction in σ 8 − Ωm space; we find consistency with the lensing results from the Dark Energy Survey, and give combined lensing-only parameter constraints that are tighter than joint results using galaxy clustering. Using the Planck cosmic infrared background (CIB) maps as an additional tracer of high-redshift matter, we make a combined Planck -only estimate of the lensing potential over 60% of the sky with considerably more small-scale signal. We additionally demonstrate delensing of the Planck power spectra using the joint and individual lensing potential estimates, detecting a maximum removal of 40% of the lensing-induced power in all spectra. The improvement in the sharpening of the acoustic peaks by including both CIB and the quadratic lensing reconstruction is detected at high significance.

464 citations


Journal ArticleDOI
TL;DR: A general covariant modified theory of gravity in D=4 spacetime dimensions which propagates only the massless graviton and bypasses Lovelock's theorem is presented and several appealing new predictions of this theory are reported.
Abstract: In this Letter we present a general covariant modified theory of gravity in D=4 spacetime dimensions which propagates only the massless graviton and bypasses Lovelock's theorem. The theory we present is formulated in D>4 dimensions and its action consists of the Einstein-Hilbert term with a cosmological constant, and the Gauss-Bonnet term multiplied by a factor 1/(D-4). The four-dimensional theory is defined as the limit D→4. In this singular limit the Gauss-Bonnet invariant gives rise to nontrivial contributions to gravitational dynamics, while preserving the number of graviton degrees of freedom and being free from Ostrogradsky instability. We report several appealing new predictions of this theory, including the corrections to the dispersion relation of cosmological tensor and scalar modes, singularity resolution for spherically symmetric solutions, and others.

Journal ArticleDOI
Julia Koehler Leman1, Brian D. Weitzner2, Brian D. Weitzner3, Steven M. Lewis4, Steven M. Lewis5, Jared Adolf-Bryfogle6, Nawsad Alam7, Rebecca F. Alford2, Melanie L. Aprahamian8, David Baker3, Kyle A. Barlow9, Patrick Barth10, Patrick Barth11, Benjamin Basanta3, Brian J. Bender12, Kristin Blacklock13, Jaume Bonet14, Jaume Bonet11, Scott E. Boyken3, Phil Bradley15, Christopher Bystroff16, Patrick Conway3, Seth Cooper17, Bruno E. Correia11, Bruno E. Correia14, Brian Coventry3, Rhiju Das18, René M. de Jong19, Frank DiMaio3, Lorna Dsilva17, Roland L. Dunbrack20, Alex Ford3, Brandon Frenz3, Darwin Y. Fu12, Caleb Geniesse18, Lukasz Goldschmidt3, Ragul Gowthaman21, Jeffrey J. Gray2, Dominik Gront22, Sharon L. Guffy4, Scott Horowitz23, Po-Ssu Huang3, Thomas Huber24, Timothy M. Jacobs4, Jeliazko R. Jeliazkov2, David K. Johnson25, Kalli Kappel18, John Karanicolas20, Hamed Khakzad14, Hamed Khakzad26, Karen R. Khar25, Sagar D. Khare13, Firas Khatib27, Alisa Khramushin7, Indigo Chris King3, Robert Kleffner17, Brian Koepnick3, Tanja Kortemme9, Georg Kuenze12, Brian Kuhlman4, Daisuke Kuroda28, Jason W. Labonte2, Jason W. Labonte29, Jason K. Lai10, Gideon Lapidoth30, Andrew Leaver-Fay4, Steffen Lindert8, Thomas W. Linsky3, Nir London7, Joseph H. Lubin2, Sergey Lyskov2, Jack Maguire4, Lars Malmström14, Lars Malmström31, Lars Malmström26, Enrique Marcos3, Orly Marcu7, Nicholas A. Marze2, Jens Meiler12, Rocco Moretti12, Vikram Khipple Mulligan3, Santrupti Nerli32, Christoffer Norn30, Shane O’Conchúir9, Noah Ollikainen9, Sergey Ovchinnikov3, Michael S. Pacella2, Xingjie Pan9, Hahnbeom Park3, Ryan E. Pavlovicz3, Manasi A. Pethe13, Brian G. Pierce21, Kala Bharath Pilla24, Barak Raveh7, P. Douglas Renfrew, Shourya S. Roy Burman2, Aliza B. Rubenstein13, Marion F. Sauer12, Andreas Scheck14, Andreas Scheck11, William R. Schief6, Ora Schueler-Furman7, Yuval Sedan7, Alexander M. Sevy12, Nikolaos G. Sgourakis32, Lei Shi3, Justin B. Siegel33, Daniel-Adriano Silva3, Shannon Smith12, Yifan Song3, Amelie Stein9, Maria Szegedy13, Frank D. Teets4, Summer B. Thyme3, Ray Yu-Ruei Wang3, Andrew M. Watkins18, Lior Zimmerman7, Richard Bonneau1 
TL;DR: This Perspective reviews tools developed over the past five years in the Rosetta software, including over 80 methods, and discusses improvements to the score function, user interfaces and usability.
Abstract: The Rosetta software for macromolecular modeling, docking and design is extensively used in laboratories worldwide. During two decades of development by a community of laboratories at more than 60 institutions, Rosetta has been continuously refactored and extended. Its advantages are its performance and interoperability between broad modeling capabilities. Here we review tools developed in the last 5 years, including over 80 methods. We discuss improvements to the score function, user interfaces and usability. Rosetta is available at http://www.rosettacommons.org.

Journal ArticleDOI
TL;DR: Molpro as mentioned in this paper is a general purpose quantum chemistry software package with a long development history, originally focused on accurate wavefunction calculations for small molecules but now has many additional distinctive capabilities that include, inter alia, local correlation approximations combined with explicit correlation, highly efficient implementations of single-reference correlation methods, robust and efficient multireference methods for large molecules, projection embedding, and anharmonic vibrational spectra.
Abstract: Molpro is a general purpose quantum chemistry software package with a long development history. It was originally focused on accurate wavefunction calculations for small molecules but now has many additional distinctive capabilities that include, inter alia, local correlation approximations combined with explicit correlation, highly efficient implementations of single-reference correlation methods, robust and efficient multireference methods for large molecules, projection embedding, and anharmonic vibrational spectra. In addition to conventional input-file specification of calculations, Molpro calculations can now be specified and analyzed via a new graphical user interface and through a Python framework.

Journal ArticleDOI
TL;DR: This article provides an outline of the classification of the kingdom Fungi (including fossil fungi), and treats 19 phyla of fungi, including all currently described orders of fungi.
Abstract: This article provides an outline of the classification of the kingdom Fungi (including fossil fungi. i.e. dispersed spores, mycelia, sporophores, mycorrhizas). We treat 19 phyla of fungi. These are Aphelidiomycota, Ascomycota, Basidiobolomycota, Basidiomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Entorrhizomycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota. The placement of all fungal genera is provided at the class-, order- and family-level. The described number of species per genus is also given. Notes are provided of taxa for which recent changes or disagreements have been presented. Fungus-like taxa that were traditionally treated as fungi are also incorporated in this outline (i.e. Eumycetozoa, Dictyosteliomycetes, Ceratiomyxomycetes and Myxomycetes). Four new taxa are introduced: Amblyosporida ord. nov. Neopereziida ord. nov. and Ovavesiculida ord. nov. in Rozellomycota, and Protosporangiaceae fam. nov. in Dictyosteliomycetes. Two different classifications (in outline section and in discussion) are provided for Glomeromycota and Leotiomycetes based on recent studies. The phylogenetic reconstruction of a four-gene dataset (18S and 28S rRNA, RPB1, RPB2) of 433 taxa is presented, including all currently described orders of fungi.

Journal ArticleDOI
Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3, Fausto Acernese4  +1329 moreInstitutions (150)
TL;DR: The GW190521 signal is consistent with a binary black hole (BBH) merger source at redshift 0.13-0.30 Gpc-3 yr-1.8 as discussed by the authors.
Abstract: The gravitational-wave signal GW190521 is consistent with a binary black hole (BBH) merger source at redshift 0.8 with unusually high component masses, 85-14+21 M o˙ and 66-18+17 M o˙, compared to previously reported events, and shows mild evidence for spin-induced orbital precession. The primary falls in the mass gap predicted by (pulsational) pair-instability supernova theory, in the approximate range 65-120 M o˙. The probability that at least one of the black holes in GW190521 is in that range is 99.0%. The final mass of the merger (142-16+28 M o˙) classifies it as an intermediate-mass black hole. Under the assumption of a quasi-circular BBH coalescence, we detail the physical properties of GW190521's source binary and its post-merger remnant, including component masses and spin vectors. Three different waveform models, as well as direct comparison to numerical solutions of general relativity, yield consistent estimates of these properties. Tests of strong-field general relativity targeting the merger-ringdown stages of the coalescence indicate consistency of the observed signal with theoretical predictions. We estimate the merger rate of similar systems to be 0.13-0.11+0.30 Gpc-3 yr-1. We discuss the astrophysical implications of GW190521 for stellar collapse and for the possible formation of black holes in the pair-instability mass gap through various channels: via (multiple) stellar coalescences, or via hierarchical mergers of lower-mass black holes in star clusters or in active galactic nuclei. We find it to be unlikely that GW190521 is a strongly lensed signal of a lower-mass black hole binary merger. We also discuss more exotic possible sources for GW190521, including a highly eccentric black hole binary, or a primordial black hole binary.

Journal ArticleDOI
TL;DR: In this article, the authors have reassessed the recent research output on graphene and graphene-based materials for applications in different fields and provided an outline of graphene in terms of fundamental properties, cutting-edge research and applications.

Journal ArticleDOI
TL;DR: A quantitative synthesis of longterm biodiversity trends across Europe is reported, showing how, despite overall increase in biodiversity metric and stability in abundance, trends differ between regions, ecosystem types, and taxa.
Abstract: Local biodiversity trends over time are likely to be decoupled from global trends, as local processes may compensate or counteract global change. We analyze 161 long-term biological time series (15–91 years) collected across Europe, using a comprehensive dataset comprising ~6,200 marine, freshwater and terrestrial taxa. We test whether (i) local long-term biodiversity trends are consistent among biogeoregions, realms and taxonomic groups, and (ii) changes in biodiversity correlate with regional climate and local conditions. Our results reveal that local trends of abundance, richness and diversity differ among biogeoregions, realms and taxonomic groups, demonstrating that biodiversity changes at local scale are often complex and cannot be easily generalized. However, we find increases in richness and abundance with increasing temperature and naturalness as well as a clear spatial pattern in changes in community composition (i.e. temporal taxonomic turnover) in most biogeoregions of Northern and Eastern Europe.

Journal ArticleDOI
15 May 2020-Science
TL;DR: It is shown that thermophilization and the climatic lag in forest plant communities are primarily controlled by microclimate, and increasing tree canopy cover reduces warming rates inside forests, but loss of canopy cover leads to increased local heat that exacerbates the disequilibrium between community responses and climate change.
Abstract: Climate warming is causing a shift in biological communities in favor of warm-affinity species (i.e., thermophilization). Species responses often lag behind climate warming, but the reasons for such lags remain largely unknown. Here, we analyzed multidecadal understory microclimate dynamics in European forests and show that thermophilization and the climatic lag in forest plant communities are primarily controlled by microclimate. Increasing tree canopy cover reduces warming rates inside forests, but loss of canopy cover leads to increased local heat that exacerbates the disequilibrium between community responses and climate change. Reciprocal effects between plants and microclimates are key to understanding the response of forest biodiversity and functioning to climate and land-use changes.

Proceedings Article
30 Apr 2020
TL;DR: Simulated Policy Learning (SimPLe), a complete model-based deep RL algorithm based on video prediction models, is described and a comparison of several model architectures is presented, including a novel architecture that yields the best results in the authors' setting.
Abstract: Model-free reinforcement learning (RL) can be used to learn effective policies for complex tasks, such as Atari games, even from image observations. However, this typically requires very large amounts of interaction -- substantially more, in fact, than a human would need to learn the same games. How can people learn so quickly? Part of the answer may be that people can learn how the game works and predict which actions will lead to desirable outcomes. In this paper, we explore how video prediction models can similarly enable agents to solve Atari games with fewer interactions than model-free methods. We describe Simulated Policy Learning (SimPLe), a complete model-based deep RL algorithm based on video prediction models and present a comparison of several model architectures, including a novel architecture that yields the best results in our setting. Our experiments evaluate SimPLe on a range of Atari games in low data regime of 100k interactions between the agent and the environment, which corresponds to two hours of real-time play. In most games SimPLe outperforms state-of-the-art model-free algorithms, in some games by over an order of magnitude.

Journal ArticleDOI
TL;DR: In this article, the authors proposed three models of angular momentum transport in massive stars: a mildly efficient transport by meridional currents, an efficient transport implemented in the MESA code, and a very efficient transport to calculate natal BH spins.
Abstract: All ten LIGO/Virgo binary black hole (BH-BH) coalescences reported following the O1/O2 runs have near-zero effective spins. There are only three potential explanations for this. If the BH spin magnitudes are large, then: (i) either both BH spin vectors must be nearly in the orbital plane or (ii) the spin angular momenta of the BHs must be oppositely directed and similar in magnitude. Then there is also the possibility that (iii) the BH spin magnitudes are small. We consider the third hypothesis within the framework of the classical isolated binary evolution scenario of the BH-BH merger formation. We test three models of angular momentum transport in massive stars: A mildly efficient transport by meridional currents (as employed in the Geneva code), an efficient transport by the Tayler-Spruit magnetic dynamo (as implemented in the MESA code), and a very-efficient transport (as proposed by Fuller et al.) to calculate natal BH spins. We allow for binary evolution to increase the BH spins through accretion and account for the potential spin-up of stars through tidal interactions. Additionally, we update the calculations of the stellar-origin BH masses, including revisions to the history of star formation and to the chemical evolution across cosmic time. We find that we can simultaneously match the observed BH-BH merger rate density and BH masses and BH-BH effective spins. Models with efficient angular momentum transport are favored. The updated stellar-mass weighted gas-phase metallicity evolution now used in our models appears to be key for obtaining an improved reproduction of the LIGO/Virgo merger rate estimate. Mass losses during the pair-instability pulsation supernova phase are likely to be overestimated if the merger GW170729 hosts a BH more massive than 50âMâS. We also estimate rates of black hole-neutron star (BH-NS) mergers from recent LIGO/Virgo observations. If, in fact. angular momentum transport in massive stars is efficient, then any (electromagnetic or gravitational wave) observation of a rapidly spinning BH would indicate either a very effective tidal spin up of the progenitor star (homogeneous evolution, high-mass X-ray binary formation through case A mass transfer, or a spin-up of a Wolf-Rayet star in a close binary by a close companion), significant mass accretion by the hole, or a BH formation through the merger of two or more BHs (in a dense stellar cluster). (Less)

Journal ArticleDOI
Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam, Federico Ambrogi  +2248 moreInstitutions (155)
TL;DR: For the first time, predictions from pythia8 obtained with tunes based on NLO or NNLO PDFs are shown to reliably describe minimum-bias and underlying-event data with a similar level of agreement to predictions from tunes using LO PDF sets.
Abstract: New sets of CMS underlying-event parameters (“tunes”) are presented for the pythia8 event generator. These tunes use the NNPDF3.1 parton distribution functions (PDFs) at leading (LO), next-to-leading (NLO), or next-to-next-to-leading (NNLO) orders in perturbative quantum chromodynamics, and the strong coupling evolution at LO or NLO. Measurements of charged-particle multiplicity and transverse momentum densities at various hadron collision energies are fit simultaneously to determine the parameters of the tunes. Comparisons of the predictions of the new tunes are provided for observables sensitive to the event shapes at LEP, global underlying event, soft multiparton interactions, and double-parton scattering contributions. In addition, comparisons are made for observables measured in various specific processes, such as multijet, Drell–Yan, and top quark-antiquark pair production including jet substructure observables. The simulation of the underlying event provided by the new tunes is interfaced to a higher-order matrix-element calculation. For the first time, predictions from pythia8 obtained with tunes based on NLO or NNLO PDFs are shown to reliably describe minimum-bias and underlying-event data with a similar level of agreement to predictions from tunes using LO PDF sets.

Journal ArticleDOI
Yousef Abou El-Neaj1, Cristiano Alpigiani2, Sana Amairi-Pyka3, Henrique Araujo4, Antun Balaž5, Angelo Bassi6, Lars Bathe-Peters7, Baptiste Battelier8, Aleksandar Belić5, Elliot Bentine9, Jose Bernabeu10, Andrea Bertoldi8, Robert Bingham11, Robert Bingham12, Diego Blas13, Vasiliki Bolpasi14, Kai Bongs15, Sougato Bose16, Philippe Bouyer8, T. J. V. Bowcock17, William B. Bowden18, Oliver Buchmueller4, Clare Burrage19, Xavier Calmet20, Benjamin Canuel8, Laurentiu Ioan Caramete, Andrew Carroll17, Giancarlo Cella6, Vassilis Charmandaris14, S. Chattopadhyay21, S. Chattopadhyay22, Xuzong Chen23, Maria Luisa Chiofalo24, J. P. Coleman17, J. P. Cotter4, Y. Cui25, Andrei Derevianko26, Albert De Roeck27, Goran S. Djordjevic28, P. J. Dornan4, Michael Doser27, Ioannis Drougkakis14, Jacob Dunningham20, Ioana Dutan, Sajan Easo12, G. Elertas17, John Ellis29, John Ellis27, John Ellis13, Mai El Sawy30, Mai El Sawy31, Farida Fassi, D. Felea, Chen Hao Feng8, R. L. Flack16, Christopher J. Foot9, Ivette Fuentes19, Naceur Gaaloul32, A. Gauguet33, Remi Geiger34, Valerie Gibson35, Gian F. Giudice27, J. Goldwin15, O. A. Grachov36, Peter W. Graham37, Dario Grasso24, Maurits van der Grinten12, Mustafa Gündoğan3, Martin G. Haehnelt35, Tiffany Harte35, Aurélien Hees34, Richard Hobson18, Jason M. Hogan37, Bodil Holst38, Michael Holynski15, Mark A. Kasevich37, Bradley J. Kavanagh39, Wolf von Klitzing14, Tim Kovachy40, Benjamin Krikler41, Markus Krutzik3, Marek Lewicki13, Marek Lewicki42, Yu-Hung Lien16, Miaoyuan Liu23, Giuseppe Gaetano Luciano6, Alain Magnon43, Mohammed Mahmoud44, Sudhir Malik4, Christopher McCabe13, J. W. Mitchell22, Julia Pahl3, Debapriya Pal14, Saurabh Pandey14, Dimitris G. Papazoglou45, Mauro Paternostro46, Bjoern Penning47, Achim Peters3, Marco Prevedelli48, Vishnupriya Puthiya-Veettil49, J. J. Quenby4, Ernst M. Rasel32, Sean Ravenhall9, Jack Ringwood17, Albert Roura50, D. O. Sabulsky8, M. Sameed51, Ben Sauer4, Stefan A. Schäffer52, Stephan Schiller53, Vladimir Schkolnik3, Dennis Schlippert32, Christian Schubert32, Haifa Rejeb Sfar, Armin Shayeghi54, Ian Shipsey9, Carla Signorini24, Yeshpal Singh15, Marcelle Soares-Santos47, Fiodor Sorrentino6, T. J. Sumner4, Konstantinos Tassis14, S. Tentindo55, Guglielmo M. Tino56, Guglielmo M. Tino6, Jonathan N. Tinsley56, James Unwin57, Tristan Valenzuela12, Georgios Vasilakis14, Ville Vaskonen13, Ville Vaskonen29, Christian Vogt58, Alex Webber-Date17, André Wenzlawski59, Patrick Windpassinger59, Marian Woltmann58, Efe Yazgan60, Ming Sheng Zhan60, Xinhao Zou8, Jure Zupan61 
Harvard University1, University of Washington2, Humboldt University of Berlin3, Imperial College London4, University of Belgrade5, Istituto Nazionale di Fisica Nucleare6, Technical University of Berlin7, University of Bordeaux8, University of Oxford9, University of Valencia10, University of Strathclyde11, Rutherford Appleton Laboratory12, King's College London13, Foundation for Research & Technology – Hellas14, University of Birmingham15, University College London16, University of Liverpool17, National Physical Laboratory18, University of Nottingham19, University of Sussex20, Fermilab21, Northern Illinois University22, Peking University23, University of Pisa24, University of California, Riverside25, University of Nevada, Reno26, CERN27, University of Niš28, National Institute of Chemical Physics and Biophysics29, Beni-Suef University30, British University in Egypt31, Leibniz University of Hanover32, Paul Sabatier University33, University of Paris34, University of Cambridge35, Wayne State University36, Stanford University37, University of Bergen38, University of Amsterdam39, Northwestern University40, University of Bristol41, University of Warsaw42, University of Illinois at Urbana–Champaign43, Fayoum University44, University of Crete45, Queen's University Belfast46, Brandeis University47, University of Bologna48, Cochin University of Science and Technology49, German Aerospace Center50, University of Manchester51, University of Copenhagen52, University of Düsseldorf53, University of Vienna54, Florida State University55, University of Florence56, University of Illinois at Chicago57, University of Bremen58, University of Mainz59, Chinese Academy of Sciences60, University of Cincinnati61
TL;DR: The Atomic Experiment for Dark Matter and Gravity Exploration (AEDGE) as mentioned in this paper is a space experiment using cold atoms to search for ultra-light dark matter, and to detect gravitational waves in the frequency range between the most sensitive ranges of LISA and the terrestrial LIGO/Virgo/KAGRA/INDIGO experiments.
Abstract: We propose in this White Paper a concept for a space experiment using cold atoms to search for ultra-light dark matter, and to detect gravitational waves in the frequency range between the most sensitive ranges of LISA and the terrestrial LIGO/Virgo/KAGRA/INDIGO experiments. This interdisciplinary experiment, called Atomic Experiment for Dark Matter and Gravity Exploration (AEDGE), will also complement other planned searches for dark matter, and exploit synergies with other gravitational wave detectors. We give examples of the extended range of sensitivity to ultra-light dark matter offered by AEDGE, and how its gravitational-wave measurements could explore the assembly of super-massive black holes, first-order phase transitions in the early universe and cosmic strings. AEDGE will be based upon technologies now being developed for terrestrial experiments using cold atoms, and will benefit from the space experience obtained with, e.g., LISA and cold atom experiments in microgravity.

Journal ArticleDOI
TL;DR: AION (Atom Interferometer Observatory and Network) as mentioned in this paper is a proposed UK-based experimental program using cold strontium atoms to search for ultra-light dark matter, to explore gravitational waves in the mid-frequency range between the peak sensitivities of the LISA and LIGO/Virgo/ KAGRA/INDIGO-Einstein Telescope/Cosmic Explorer experiments, and to probe other frontiers in fundamental physics.
Abstract: We outline the experimental concept and key scientific capabilities of AION (Atom Interferometer Observatory and Network), a proposed UK-based experimental programme using cold strontium atoms to search for ultra-light dark matter, to explore gravitational waves in the mid-frequency range between the peak sensitivities of the LISA and LIGO/Virgo/ KAGRA/INDIGO/Einstein Telescope/Cosmic Explorer experiments, and to probe other frontiers in fundamental physics. AION would complement other planned searches for dark matter, as well as probe mergers involving intermediate mass black holes and explore early universe cosmology. AION would share many technical features with the MAGIS experimental programme in the US, and synergies would flow from operating AION in a network with this experiment, as well as with other atom interferometer experiments such as MIGA, ZAIGA and ELGAR. Operating AION in a network with other gravitational wave detectors such as LIGO, Virgo and LISA would also offer many synergies.

Journal ArticleDOI
Sergei Põlme1, Sergei Põlme2, Kessy Abarenkov2, R. Henrik Nilsson3, Björn D. Lindahl4, Karina E. Clemmensen4, Håvard Kauserud5, Nhu H. Nguyen6, Rasmus Kjøller7, Scott T. Bates8, Petr Baldrian9, Tobias Guldberg Frøslev7, Kristjan Adojaan1, Alfredo Vizzini10, Ave Suija1, Donald H. Pfister11, Hans Otto Baral, Helle Järv12, Hugo Madrid13, Hugo Madrid14, Jenni Nordén, Jian-Kui Liu15, Julia Pawłowska16, Kadri Põldmaa1, Kadri Pärtel1, Kadri Runnel1, Karen Hansen17, Karl-Henrik Larsson, Kevin D. Hyde18, Marcelo Sandoval-Denis, Matthew E. Smith19, Merje Toome-Heller20, Nalin N. Wijayawardene, Nelson Menolli21, Nicole K. Reynolds19, Rein Drenkhan22, Sajeewa S. N. Maharachchikumbura15, Tatiana Baptista Gibertoni23, Thomas Læssøe7, William J. Davis24, Yuri Tokarev, Adriana Corrales25, Adriene Mayra Soares, Ahto Agan1, A. R. Machado23, Andrés Argüelles-Moyao26, Andrew P. Detheridge, Angelina de Meiras-Ottoni23, Annemieke Verbeken27, Arun Kumar Dutta28, Bao-Kai Cui29, C. K. Pradeep, César Marín30, Daniel E. Stanton, Daniyal Gohar1, Dhanushka N. Wanasinghe31, Eveli Otsing1, Farzad Aslani1, Gareth W. Griffith, Thorsten Lumbsch32, Hans-Peter Grossart33, Hans-Peter Grossart34, Hossein Masigol35, Ina Timling36, Inga Hiiesalu1, Jane Oja1, John Y. Kupagme1, József Geml, Julieta Alvarez-Manjarrez26, Kai Ilves1, Kaire Loit22, Kalev Adamson22, Kazuhide Nara37, Kati Küngas1, Keilor Rojas-Jimenez38, Krišs Bitenieks39, Laszlo Irinyi40, Laszlo Irinyi41, Laszlo Nagy, Liina Soonvald22, Li-Wei Zhou31, Lysett Wagner33, M. Catherine Aime8, Maarja Öpik1, María Isabel Mujica30, Martin Metsoja1, Martin Ryberg42, Martti Vasar1, Masao Murata37, Matthew P. Nelsen32, Michelle Cleary4, Milan C. Samarakoon18, Mingkwan Doilom31, Mohammad Bahram1, Mohammad Bahram4, Niloufar Hagh-Doust1, Olesya Dulya1, Peter R. Johnston43, Petr Kohout9, Qian Chen31, Qing Tian18, Rajasree Nandi44, Rasekh Amiri1, Rekhani H. Perera18, Renata dos Santos Chikowski23, Renato Lucio Mendes-Alvarenga23, Roberto Garibay-Orijel26, Robin Gielen1, Rungtiwa Phookamsak31, Ruvishika S. Jayawardena18, Saleh Rahimlou1, Samantha C. Karunarathna31, Saowaluck Tibpromma31, Shawn P. Brown45, Siim-Kaarel Sepp1, Sunil Mundra46, Sunil Mundra5, Zhu Hua Luo47, Tanay Bose48, Tanel Vahter1, Tarquin Netherway4, Teng Yang31, Tom W. May49, Torda Varga, Wei Li50, Victor R. M. Coimbra23, Virton Rodrigo Targino de Oliveira23, Vitor Xavier de Lima23, Vladimir S. Mikryukov1, Yong-Zhong Lu51, Yosuke Matsuda52, Yumiko Miyamoto53, Urmas Kõljalg1, Urmas Kõljalg2, Leho Tedersoo2, Leho Tedersoo1 
University of Tartu1, American Museum of Natural History2, University of Gothenburg3, Swedish University of Agricultural Sciences4, University of Oslo5, University of Hawaii at Manoa6, University of Copenhagen7, Purdue University8, Academy of Sciences of the Czech Republic9, University of Turin10, Harvard University11, Synlab Group12, Universidad Santo Tomás13, Universidad Mayor14, University of Electronic Science and Technology of China15, University of Warsaw16, Swedish Museum of Natural History17, Mae Fah Luang University18, University of Florida19, Laos Ministry of Agriculture and Forestry20, São Paulo Federal Institute of Education, Science and Technology21, Estonian University of Life Sciences22, Federal University of Pernambuco23, United States Department of Energy24, Del Rosario University25, National Autonomous University of Mexico26, Ghent University27, West Bengal State University28, Beijing Forestry University29, Pontifical Catholic University of Chile30, Chinese Academy of Sciences31, Field Museum of Natural History32, Leibniz Association33, University of Potsdam34, University of Gilan35, University of Alaska Fairbanks36, University of Tokyo37, University of Costa Rica38, Forest Research Institute39, Westmead Hospital40, University of Sydney41, Uppsala University42, Landcare Research43, University of Chittagong44, University of Memphis45, United Arab Emirates University46, Ministry of Land and Resources of the People's Republic of China47, University of Pretoria48, Royal Botanic Gardens49, Ocean University of China50, Guizhou University51, Mie University52, Hokkaido University53
TL;DR: Fungal traits and character database FungalTraits operating at genus and species hypothesis levels is presented in this article, which includes 17 lifestyle related traits of fungal and Stramenopila genera.
Abstract: The cryptic lifestyle of most fungi necessitates molecular identification of the guild in environmental studies. Over the past decades, rapid development and affordability of molecular tools have tremendously improved insights of the fungal diversity in all ecosystems and habitats. Yet, in spite of the progress of molecular methods, knowledge about functional properties of the fungal taxa is vague and interpretation of environmental studies in an ecologically meaningful manner remains challenging. In order to facilitate functional assignments and ecological interpretation of environmental studies we introduce a user friendly traits and character database FungalTraits operating at genus and species hypothesis levels. Combining the information from previous efforts such as FUNGuild and Fun(Fun) together with involvement of expert knowledge, we reannotated 10,210 and 151 fungal and Stramenopila genera, respectively. This resulted in a stand-alone spreadsheet dataset covering 17 lifestyle related traits of fungal and Stramenopila genera, designed for rapid functional assignments of environmental studies. In order to assign the trait states to fungal species hypotheses, the scientific community of experts manually categorised and assigned available trait information to 697,413 fungal ITS sequences. On the basis of those sequences we were able to summarise trait and host information into 92,623 fungal species hypotheses at 1% dissimilarity threshold.

Journal ArticleDOI
TL;DR: It is found that the way people perceived the situation explained more variance in compliance than personality traits which is in accordance with the hypothesis that strong situations, such as the COVID-19 pandemic, leave less room for dispositional tendencies in predicting behaviors than situational cues.

Journal ArticleDOI
TL;DR: The authors reviewed existing immigrant entrepreneurship literature in order to map out the major streams of research and identify widely used theories, methods, and contexts, highlighting the need for interdisciplinary approaches that transcend boundaries.

Journal ArticleDOI
Nabila Aghanim1, Yashar Akrami2, Yashar Akrami3, M. Ashdown4  +202 moreInstitutions (61)
TL;DR: In this article, the authors present an extensive analysis of systematic effects, including the use of end-to-end simulations to facilitate their removal and characterize the residuals, for the Planck 2018 HFI data.
Abstract: This paper presents the High Frequency Instrument (HFI) data processing procedures for the Planck 2018 release. Major improvements in mapmaking have been achieved since the previous Planck 2015 release, many of which were used and described already in an intermediate paper dedicated to the Planck polarized data at low multipoles. These improvements enabled the first significant measurement of the reionization optical depth parameter using Planck -HFI data. This paper presents an extensive analysis of systematic effects, including the use of end-to-end simulations to facilitate their removal and characterize the residuals. The polarized data, which presented a number of known problems in the 2015 Planck release, are very significantly improved, especially the leakage from intensity to polarization. Calibration, based on the cosmic microwave background (CMB) dipole, is now extremely accurate and in the frequency range 100–353 GHz reduces intensity-to-polarization leakage caused by calibration mismatch. The Solar dipole direction has been determined in the three lowest HFI frequency channels to within one arc minute, and its amplitude has an absolute uncertainty smaller than 0.35 μ K, an accuracy of order 10−4 . This is a major legacy from the Planck HFI for future CMB experiments. The removal of bandpass leakage has been improved for the main high-frequency foregrounds by extracting the bandpass-mismatch coefficients for each detector as part of the mapmaking process; these values in turn improve the intensity maps. This is a major change in the philosophy of “frequency maps”, which are now computed from single detector data, all adjusted to the same average bandpass response for the main foregrounds. End-to-end simulations have been shown to reproduce very well the relative gain calibration of detectors, as well as drifts within a frequency induced by the residuals of the main systematic effect (analogue-to-digital convertor non-linearity residuals). Using these simulations, we have been able to measure and correct the small frequency calibration bias induced by this systematic effect at the 10−4 level. There is no detectable sign of a residual calibration bias between the first and second acoustic peaks in the CMB channels, at the 10−3 level.

Journal ArticleDOI
TL;DR: The diversity of tools and activities observed in these three sites shows that Western Europe was populated by adaptable hominins during this time, and questions concerning understudied migration pathways, such as the Sicilian route are raised.
Abstract: Notarchirico (Southern Italy) has yielded the earliest evidence of Acheulean settlement in Italy and four older occupation levels have recently been unearthed, including one with bifaces, extending the roots of the Acheulean in Italy even further back in time. New 40Ar/39Ar on tephras and ESR dates on bleached quartz securely and accurately place these occupations between 695 and 670 ka (MIS 17), penecontemporaneous with the Moulin-Quignon and la Noira sites (France). These new data demonstrate a very rapid expansion of shared traditions over Western Europe during a period of highly variable climatic conditions, including interglacial and glacial episodes, between 670 and 650 (i.e., MIS17/MIS16 transition). The diversity of tools and activities observed in these three sites shows that Western Europe was populated by adaptable hominins during this time. These conclusions question the existence of refuge areas during intense glacial stages and raise questions concerning understudied migration pathways, such as the Sicilian route.

Journal ArticleDOI
TL;DR: Higher levels of stress were associated with younger age, being a woman, lower level of education, being single, staying with more children, and living in a country or area with a more severe COVID‐19 situation.
Abstract: Background To limit the rapid spread of COVID-19, countries have asked their citizens to stay at home. As a result, demographic and cultural factors related to home life have become especially relevant to predict population well-being during isolation. This pre-registered worldwide study analyses the relationship between the number of adults and children in a household, marital status, age, gender, education level, COVID-19 severity, individualism-collectivism, and perceived stress. Methods We used the COVIDiSTRESS Global Survey data of 53,524 online participants from 26 countries and areas. The data were collected between 30 March and 6 April 2020. Results Higher levels of stress were associated with younger age, being a woman, lower level of education, being single, staying with more children, and living in a country or area with a more severe COVID-19 situation. Conclusions The COVID-19 pandemic revealed that certain people may be more susceptible to experience elevated levels of stress. Our findings highlight the need for public health to be attentive to both the physical and the psychological well-being of these groups.

Journal ArticleDOI
TL;DR: The role of arginases produced by myeloid cells in regulating various populations of immune cells is described, molecular mechanisms of immunoregulatory processes involving L-arginine metabolism are discussed and therapeutic approaches to mitigate the negative effects ofArginases on antitumor immune response are outlined.
Abstract: Amino acid metabolism is a critical regulator of the immune response, and its modulating becomes a promising approach in various forms of immunotherapy. Insufficient concentrations of essential amino acids restrict T-cells activation and proliferation. However, only arginases, that degrade L-arginine, as well as enzymes that hydrolyze L-tryptophan are substantially increased in cancer. Two arginase isoforms, ARG1 and ARG2, have been found to be present in tumors and their increased activity usually correlates with more advanced disease and worse clinical prognosis. Nearly all types of myeloid cells were reported to produce arginases and the increased numbers of various populations of myeloid-derived suppressor cells and macrophages correlate with inferior clinical outcomes of cancer patients. Here, we describe the role of arginases produced by myeloid cells in regulating various populations of immune cells, discuss molecular mechanisms of immunoregulatory processes involving L-arginine metabolism and outline therapeutic approaches to mitigate the negative effects of arginases on antitumor immune response. Development of potent arginase inhibitors, with improved pharmacokinetic properties, may lead to the elaboration of novel therapeutic strategies based on targeting immunoregulatory pathways controlled by L-arginine degradation.