scispace - formally typeset
Search or ask a question

Showing papers in "Archives of Virology in 2017"


Journal ArticleDOI
TL;DR: In this paper, the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in March 2017 are presented, and the changes are described in detail.
Abstract: This article lists the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in March 2017.

814 citations


Journal ArticleDOI
TL;DR: The evidence for antiviral activity of different flavonoids is summarized, highlighting, where investigated, the cellular and molecular mechanisms of action on viruses and future perspectives on therapeutic applications of flavonoid against viral infections are presented.
Abstract: Flavonoids are widely distributed as secondary metabolites produced by plants and play important roles in plant physiology, having a variety of potential biological benefits such as antioxidant, anti-inflammatory, anticancer, antibacterial, antifungal and antiviral activity. Different flavonoids have been investigated for their potential antiviral activities and several of them exhibited significant antiviral properties in in vitro and even in vivo studies. This review summarizes the evidence for antiviral activity of different flavonoids, highlighting, where investigated, the cellular and molecular mechanisms of action on viruses. We also present future perspectives on therapeutic applications of flavonoids against viral infections.

312 citations


Journal ArticleDOI
TL;DR: Details are provided on an updated Circoviridae taxonomy ratified by the International Committee on the Taxonomy of Viruses in 2016, which establishes the genus Cyclovirus and reassigns the genus Gyrovirus to the family Anelloviraceae, a separate lineage of animal viruses that also contains circular ssDNA genomes.
Abstract: The family Circoviridae contains viruses with covalently closed, circular, single-stranded DNA (ssDNA) genomes, including the smallest known autonomously replicating, capsid-encoding animal pathogens. Members of this family are known to cause fatal diseases in birds and pigs and have been historically classified in one of two genera: Circovirus, which contains avian and porcine pathogens, and Gyrovirus, which includes a single species (Chicken anemia virus). However, over the course of the past six years, viral metagenomic approaches as well as degenerate PCR detection in unconventional hosts and environmental samples have elucidated a broader host range, including fish, a diversity of mammals, and invertebrates, for members of the family Circoviridae. Notably, these methods have uncovered a distinct group of viruses that are closely related to members of the genus Circovirus and comprise a new genus, Cyclovirus. The discovery of new viruses and a re-evaluation of genomic features that characterize members of the Circoviridae prompted a revision of the classification criteria used for this family of animal viruses. Here we provide details on an updated Circoviridae taxonomy ratified by the International Committee on the Taxonomy of Viruses in 2016, which establishes the genus Cyclovirus and reassigns the genus Gyrovirus to the family Anelloviridae, a separate lineage of animal viruses that also contains circular ssDNA genomes. In addition, we provide a new species demarcation threshold of 80% genome-wide pairwise identity for members of the family Circoviridae, based on pairwise identity distribution analysis, and list guidelines to distinguish between members of this family and other eukaryotic viruses with circular, ssDNA genomes.

255 citations


Journal ArticleDOI
Washington University in St. Louis1, National Institutes of Health2, Georgia State University3, United States Army Medical Research Institute of Infectious Diseases4, Friedrich Loeffler Institute5, Commonwealth Scientific and Industrial Research Organisation6, Columbia University7, University of Texas Medical Branch8, Colorado State University9, Yeshiva University10, University of Queensland11, University of Marburg12, University of Warwick13, Mayo Clinic14, Zhejiang University15, World Health Organization16, Erasmus University Rotterdam17, New York University18, Queensland University of Technology19, Public Health England20, Auckland University of Technology21, Kyoto University22, Huazhong Agricultural University23, Laval University24, Okayama University25, United States Geological Survey26, Northwestern University27, Icahn School of Medicine at Mount Sinai28, Boston University29, Novosibirsk State University30, University of Medicine and Health Sciences31, University of Veterinary Medicine Vienna32, Texas Biomedical Research Institute33, Texas A&M University34, University of Auckland35, University of St Andrews36, University of Melbourne37, Queen's University Belfast38, Centers for Disease Control and Prevention39, University of Freiburg40, Defence Science and Technology Laboratory41, University of Missouri42, Hokkaido University43, Pasteur Institute44, Claude Bernard University Lyon 145, National University of Singapore46, University of Rochester47, Kansas State University48
TL;DR: The updated taxonomy of the order Mononegavirales is presented, with non-Latinized binomial species names replaced all paramyxovirus and pneumovirus species names, thereby accomplishing application of binomial Species names throughout the entire order.
Abstract: In 2017, the order Mononegavirales was expanded by the inclusion of a total of 69 novel species. Five new rhabdovirus genera and one new nyamivirus genus were established to harbor 41 of these species, whereas the remaining new species were assigned to already established genera. Furthermore, non-Latinized binomial species names replaced all paramyxovirus and pneumovirus species names, thereby accomplishing application of binomial species names throughout the entire order. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).

222 citations


Journal ArticleDOI
TL;DR: Two new genera are established: Capulavirus, with four new species (Alfalfa leaf curl virus, Euphorbia caput-medusae latent virus, French bean severe Leaf curl virus and Plantago lanceolata latent virus), and Grablov virus, with one newspecies (Grapevine red blotch virus).
Abstract: Geminiviruses are plant-infecting single-stranded DNA viruses that occur in most parts of the world. Currently, there are seven genera within the family Geminiviridae (Becurtovirus, Begomovirus, Curtovirus, Eragrovirus, Mastrevirus, Topocuvirus and Turncurtovirus). The rate of discovery of new geminiviruses has increased significantly over the last decade as a result of new molecular tools and approaches (rolling-circle amplification and deep sequencing) that allow for high-throughput workflows. Here, we report the establishment of two new genera: Capulavirus, with four new species (Alfalfa leaf curl virus, Euphorbia caput-medusae latent virus, French bean severe leaf curl virus and Plantago lanceolata latent virus), and Grablovirus, with one new species (Grapevine red blotch virus). The aphid species Aphis craccivora has been shown to be a vector for Alfalfa leaf curl virus, and the treehopper species Spissistilus festinus is the likely vector of Grapevine red blotch virus. In addition, two highly divergent groups of viruses found infecting citrus and mulberry plants have been assigned to the new species Citrus chlorotic dwarf associated virus and Mulberry mosaic dwarf associated virus, respectively. These species have been left unassigned to a genus by the ICTV because their particle morphology and insect vectors are unknown.

189 citations


Journal ArticleDOI
TL;DR: The modulation of reactive species production and oxidative stress potentially represents a novel pharmacological approach for reducing the consequences of viral pathogenesis.
Abstract: Reactive species are frequently formed after viral infections. Antioxidant defences, including enzymatic and non-enzymatic components, protect against reactive species, but sometimes these defences are not completely adequate. An imbalance in the production of reactive species and the body's inability to detoxify these reactive species is referred to as oxidative stress. The aim of this review is to analyse the role of oxidative stress in the pathogenesis of viral infections and highlight some major therapeutic approaches that have gained importance, with regards to controlling virus-induced oxidative injury. Attention will be focused on DNA viruses (papillomaviruses, hepadnaviruses), RNA viruses (flaviviruses, orthomyxoviruses, paramyxoviruses, togaviruses) and retroviruses (human immunodeficiency virus). In general, viruses cause an imbalance in the cellular redox environment, which depending on the virus and the cell can result in different responses, e.g. cell signaling, antioxidant defences, reactive species, and other processes. Therefore, the modulation of reactive species production and oxidative stress potentially represents a novel pharmacological approach for reducing the consequences of viral pathogenesis.

146 citations


Journal ArticleDOI
TL;DR: The present article covers antiviral properties of andrographolide in variety of viral infections, with the hope of developing of a new highly potent antiviral drug with multiple effects.
Abstract: Andrographolide, a diterpenoid, is known for its anti-inflammatory effects. It can be isolated from various plants of the genus Andrographis, commonly known as 'creat'. This purified compound has been tested for its anti-inflammatory effects in various stressful conditions, such as ischemia, pyrogenesis, arthritis, hepatic or neural toxicity, carcinoma, and oxidative stress, Apart from its anti-inflammatory effects, andrographolide also exhibits immunomodulatory effects by effectively enhancing cytotoxic T cells, natural killer (NK) cells, phagocytosis, and antibody-dependent cell-mediated cytotoxicity (ADCC). All these properties of andrographolide form the foundation for the use of this miraculous compound to restrain virus replication and virus-induced pathogenesis. The present article covers antiviral properties of andrographolide in variety of viral infections, with the hope of developing of a new highly potent antiviral drug with multiple effects.

120 citations


Journal ArticleDOI
TL;DR: An update of the current understanding of the role and regulation of reactive oxygen species in various viral infections, cellular signaling pathways and immune responses is presented and how the antioxidant defense system acts as an antiviral effector to limit cell damage is discussed.
Abstract: Several biological processes as well as infectious agents, physiological or environmental stress, and perturbed antioxidant response can promote oxidative stress. Oxidative stress usually happens when cells are exposed to more electrically charged reactive oxygen species (ROS) such as H2O2 or O2-. ROS are well known for being both beneficial and deleterious. Recent studies have indicated that ROS are deleterious to cells, leading to programmed cell death (PCD) at high concentrations. At low concentrations, however, ROS can act as signaling molecules in a variety of cellular processes. In this review, we present an update of our current understanding of the role and regulation of reactive oxygen species in various viral infections, cellular signaling pathways and immune responses. We then discuss how the antioxidant defense system acts as an antiviral effector to limit cell damage.

89 citations


Journal ArticleDOI
TL;DR: A new classification scheme for IBDV is proposed based solely on genogroups identified from phylogenetic analysis of the hvVP2 of strains worldwide, suggesting that antigenic drift may be occurring in genogroup 3, possibly in response to antigenic pressure from vaccination.
Abstract: Infectious bursal disease virus (IBDV) causes infectious bursal disease (IBD), an immunosuppressive disease of poultry. The current classification scheme of IBDV is confusing because it is based on antigenic types (variant and classical) as well as pathotypes. Many of the amino acid changes differentiating these various classifications are found in a hypervariable region of the capsid protein VP2 (hvVP2), the major host protective antigen. Data from this study were used to propose a new classification scheme for IBDV based solely on genogroups identified from phylogenetic analysis of the hvVP2 of strains worldwide. Seven major genogroups were identified, some of which are geographically restricted and others that have global dispersion, such as genogroup 1. Genogroup 2 viruses are predominately distributed in North America, while genogroup 3 viruses are most often identified on other continents. Additionally, we have identified a population of genogroup 3 vvIBDV isolates that have an amino acid change from alanine to threonine at position 222 while maintaining other residues conserved in this genogroup (I242, I256 and I294). A222T is an important mutation because amino acid 222 is located in the first of four surface loops of hvVP2. A similar shift from proline to threonine at 222 is believed to play a role in the significant antigenic change of the genogroup 2 IBDV strains, suggesting that antigenic drift may be occurring in genogroup 3, possibly in response to antigenic pressure from vaccination.

88 citations


Journal ArticleDOI
TL;DR: The data indicate that calves are susceptible to infection by the newly emerged PDCoV, but not by the swine coronavirus, PEDV.
Abstract: Fecal virus shedding, seroconversion and histopathology were evaluated in 3-7-year-old gnotobiotic calves orally inoculated with porcine deltacoronavirus (PDCoV) (9.0-9.6 log10 genomic equivalents [GE] of OH-FD22-P5; n=4) or porcine epidemic diarrhea virus (PEDV) (10.2-12.5 log10 GE of PC21A; n=3). In PDCoV-inoculated calves, an acute but persisting fecal viral RNA shedding and PDCoV-specific serum IgG antibody responses were observed, but without lesions or clinical disease. However, no fecal shedding, seroconversion, histological lesions, and clinical disease were detected in PEDV-inoculated calves. Our data indicate that calves are susceptible to infection by the newly emerged PDCoV, but not by the swine coronavirus, PEDV.

84 citations


Journal ArticleDOI
TL;DR: This newly developed real-time RT-PCR method is expected to detect not only SARS- CoV and MERS-CoV in humans but also several bat CoVs that are closely related to these viruses in bats.
Abstract: Unfortunately, the concentration unit of plasmids was published incorrectly in the original publication of the article. The concentration unit, 'copies/ml' should be corrected to 'copies/μl'. This changes do not affect to the analytic sensitivity of the method because the detection limits of 50-100 copies/μL and 5-100 copies/μL using pUC57-SARS-pS2 (a template for SARS-CoV) and pGEM-MERS-S2 (a template for MERS-CoV), respectively, were as sensitive as other real-time PCR methods [1].

Journal ArticleDOI
TL;DR: A brief history of the ICTV is presented, showing how it has adapted to advancements in knowledge of virus diversity and the methods used to characterize it, and recent developments that are facilitating substantial changes in the operations and promoting dialogue with the virology community are outlined.
Abstract: We mark the 50th anniversary of the International Committee on Taxonomy of Viruses (ICTV) by presenting a brief history of the organization since its foundation, showing how it has adapted to advancements in our knowledge of virus diversity and the methods used to characterize it. We also outline recent developments, supported by a grant from the Wellcome Trust (UK), that are facilitating substantial changes in the operations of the ICTV and promoting dialogue with the virology community. These developments will generate improved online resources, including a freely available and regularly updated ICTV Virus Taxonomy Report. They also include a series of meetings between the ICTV and the broader community focused on some of the major challenges facing virus taxonomy, with the outcomes helping to inform the future policy and practice of the ICTV.

Journal ArticleDOI
TL;DR: Based on the structural data, the modification of the adenine moiety of sinefungin is suggested to increase selectivity and to covalently link it to a GTP analogue, to increase the affinity of the synthesized compounds.
Abstract: Zika virus is considered a major global threat to human kind. Here, we present a crystal structure of one of its essential enzymes, the methyltransferase, with the inhibitor sinefungin. This structure, together with previously solved structures with bound substrates, will provide the information needed for rational inhibitor design. Based on the structural data we suggest the modification of the adenine moiety of sinefungin to increase selectivity and to covalently link it to a GTP analogue, to increase the affinity of the synthesized compounds.

Journal ArticleDOI
TL;DR: This review summarizes the most recent advances regarding HSP90 function, mechanisms of action, and molecular pathways that are associated with viral infection, and provides a comprehensive understanding of the role of H SP90 in the immune response and exosome-mediated viral transmission.
Abstract: The emergence of antiviral drug-resistant mutants is the most important issue in current antiviral therapy. As obligate parasites, viruses require host factors for efficient replication. An ideal therapeutic target to prevent drug-resistance development is represented by host factors that are crucial for the viral life cycle. Recent studies have indicated that heat shock protein 90 (HSP90) is a crucial host factor that is required by many viruses for multiple phases of their life cycle including viral entry, nuclear import, transcription, and replication. In this review, we summarize the most recent advances regarding HSP90 function, mechanisms of action, and molecular pathways that are associated with viral infection, and provide a comprehensive understanding of the role of HSP90 in the immune response and exosome-mediated viral transmission. In addition, several HSP90 inhibitors have entered clinical trials for specific cancers that are associated with viral infection, which further implies a crucial role for HSP90 in the malignant transformation of virus-infected cells; as such, HSP90 inhibitors exhibit excellent therapeutic potential. Finally, we describe the challenge of developing HSP90 inhibitors as anti-viral drugs.

Journal ArticleDOI
TL;DR: There is a dire need to develop a suitable vaccine to combat hydropericardium syndrome, and recombinant vaccine candidates being developed by using molecular biology and biotechnological approaches for the prevention and control of infectious diseases, including HPS are suggested.
Abstract: The poultry industry has emerged as one of the largest and fastest growing public sectors in the developed and developing countries. Unfortunately, this industry is under a major threat from diseases that are viral (Newcastle disease, infectious bursal disease, influenza, hydropericardium syndrome), bacterial (colibacillosis, pasteurellosis, salmonellosis, mycoplasmosis), parasitic (coccidiosis, histoplasmosis) or nutritional (dyschondroplasia, osteoporosis). Among these diseases, hydropericardium syndrome (HPS) is one of the important emerging diseases occurring in the specific areas of the world where broilers (chickens) are reared under intensive conditions. HPS was first observed in 1987 at Angara Goth, an area near Karachi, Pakistan, where broilers are raised. Since then, HPS has been reported in many countries of the world. From these reported cases, an adenovirus that was either isolated from or visualized electron microscopically in the liver of affected broilers has been implicated in the syndrome. The syndrome has been reproduced by inoculation of isolated fowl adenovirus (FAdV) strains, and hence, the syndrome is also called infectious hydropericardium syndrome. To our knowledge, HPS has not been observed in humans, so it is not considered a zoonotic disease, but it is of economic importance and causes huge losses to the poultry industry. Efforts have been made to develop conventional vaccines against this disease, which were formulated from infected liver homogenate. Formalin-inactivated liver organ vaccines have failed to protect the poultry industry. Hence, there is a dire need to develop a suitable vaccine to combat this disease. Currently, recombinant vaccine candidates are being developed by using molecular biology and biotechnological approaches for the prevention and control of infectious diseases, including HPS. Therefore, it is suggested that the immunogenicity of these recombinant proteins should be evaluated for their use as subunit vaccines.

Journal ArticleDOI
TL;DR: The aim of this article is to consolidate all of the current cDNA assembly strategies and transcription systems used in rescue of rNDV in order to attain a better understanding of the advantages and disadvantages of each approach.
Abstract: Since the first rescue of a recombinant Newcastle disease virus (rNDV) in the late 1990s, many more rNDVs have been rescued by researchers around the world. Regardless of methodology, the main principle behind rescue of the virus has remained the same, i.e., the formation of a functional replication complex by simultaneously providing the full-length viral RNA and the viral NP, P and L proteins. However, different strategies have been reported for the insertion of the full-length genome into a suitable transcription vector, which remains the most challenging step of the rescue. Moreover, several systems have been published for provision of the DNA-dependent RNA polymerase, which is needed for transcription of viral RNA (vRNA) from the transfected plasmid DNA. The aim of this article is to consolidate all of the current cDNA assembly strategies and transcription systems used in rescue of rNDV in order to attain a better understanding of the advantages and disadvantages of each approach.

Journal ArticleDOI
TL;DR: To the authors' knowledge, this is the first report of reliable diagnosis of BBTV infection by RPA using crude leaf sap as a template and the results obtained were consistent with PCR-based detection using purified DNA as template.
Abstract: Recombinase polymerase amplification (RPA) is a rapid, isothermal amplification method with high specificity and sensitivity. In this study, an assay was developed and evaluated for the detection of banana bunchy top virus (BBTV) in infected banana plants. Three oligonucleotide primer pairs were designed from the replicase initiator protein gene sequences of BBTV to function both in RPA as well as in polymerase chain reaction (PCR). A total of 133 symptomatic as well as asymptomatic banana leaf samples from various cultivars were collected from the different regions of India and evaluated for BBTV infection using the RPA assay. BBTV was efficiently detected using crude leaf sap in RPA and the results obtained were consistent with PCR-based detection using purified DNA as template. To our knowledge, this is the first report of reliable diagnosis of BBTV infection by RPA using crude leaf sap as a template.

Journal ArticleDOI
TL;DR: Information is provided regarding BLV infection levels in Myanmar and confirms that genotype-10 is circulating in Myanmar, which is the most common neoplastic disease of cattle worldwide.
Abstract: Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis, which is the most common neoplastic disease of cattle. BLV infects cattle worldwide and affects both health status and productivity. However, no studies have examined the distribution of BLV in Myanmar, and the genetic characteristics of Myanmar BLV strains are unknown. Therefore, the aim of this study was to detect BLV infection in Myanmar and examine genetic variability. Blood samples were obtained from 66 cattle from different farms in four townships of the Nay Pyi Taw Union Territory of central Myanmar. BLV provirus was detected by nested PCR and real-time PCR targeting BLV long terminal repeats. Results were confirmed by nested PCR targeting the BLV env-gp51 gene and real-time PCR targeting the BLV tax gene. Out of 66 samples, six (9.1 %) were positive for BLV provirus. A phylogenetic tree, constructed using five distinct partial and complete env-gp51 sequences from BLV strains isolated from three different townships, indicated that Myanmar strains were genotype-10. A phylogenetic tree constructed from whole genome sequences obtained by sequencing cloned, overlapping PCR products from two Myanmar strains confirmed the existence of genotype-10 in Myanmar. Comparative analysis of complete genome sequences identified genotype-10-specific amino acid substitutions in both structural and non-structural genes, thereby distinguishing genotype-10 strains from other known genotypes. This study provides information regarding BLV infection levels in Myanmar and confirms that genotype-10 is circulating in Myanmar.

Journal ArticleDOI
TL;DR: Phylogenetic analysis based on the amino acid sequence of the full-length ORF2 demonstrated that FLX was highly divergent from all other avastroviruses, suggesting that it can be classified as a member of a novel species in the genus Avastrovirus.
Abstract: We report the complete genome sequence of a new avastrovirus of goose-origin (FLX). The 7299-nt-long genome consisted of three overlapping open reading frames (ORFs) that were in different reading frames. Pairwise comparisons showed that the FLX genome was 59% identical to its closest relatives and that the levels of amino acid identity shared by FLX with other astroviruses did not exceed 54% in ORF1a, 66% in ORF1b, and 50% in ORF2, respectively. Phylogenetic analysis based on the amino acid sequence of the full-length ORF2 demonstrated that FLX was highly divergent from all other avastroviruses. At the amino acid level the complete capsid region of FLX shared genetic distances of 0.574–0.719 with three official avastrovirus species, suggesting that it can be classified as a member of a novel species in the genus Avastrovirus.

Journal ArticleDOI
TL;DR: The novel PCR assay was more sensitive than two OIE-validated PCR assays when testing 14 strains of ASFV representing four genotypes (I, V, VIII and IX) from diverse geographical areas and shown to be applicable for molecular diagnosis and surveillance of AsF.
Abstract: Due to the current unavailability of vaccines or treatments for African swine fever (ASF), which is caused by African swine fever virus (ASFV), rapid and reliable detection of the virus is essential for timely implementation of emergency control measures and differentiation of ASF from other swine diseases with similar clinical presentations. Here, an improved PCR assay was developed and evaluated for sensitive and universal detection of ASFV. Primers specific for ASFV were designed based on the highly conserved region of the vp72 gene sequences of all ASFV strains available in GenBank, and the PCR assay was established and compared with two OIE-validated PCR tests. The analytic detection limit of the PCR assay was 60 DNA copies per reaction. No amplification signal was observed for several other porcine viruses. The novel PCR assay was more sensitive than two OIE-validated PCR assays when testing 14 strains of ASFV representing four genotypes (I, V, VIII and IX) from diverse geographical areas. A total of 62 clinical swine blood samples collected from Uganda were examined by the novel PCR, giving a high agreement (59/62) with a superior sensitive universal probe library-based real-time PCR. Eight out of 62 samples tested positive, and three samples with higher Ct values (39.15, 38.39 and 37.41) in the real-time PCR were negative for ASFV in the novel PCR. In contrast, one (with a Ct value of 29.75 by the real-time PCR) and two (with Ct values of 29.75 and 33.12) ASFV-positive samples were not identified by the two OIE-validated PCR assays, respectively. Taken together, these data show that the novel PCR assay is specific, sensitive, and applicable for molecular diagnosis and surveillance of ASF.

Journal ArticleDOI
Haitham Sobhy1
TL;DR: Similarities and differences between the entry methods used by these virus families are highlighted, with particular emphasis on viral topology and proteins that mediate viral attachment and entry.
Abstract: Viruses enter host cells via several mechanisms, including endocytosis, macropinocytosis, and phagocytosis. They can also fuse at the plasma membrane and can spread within the host via cell-to-cell fusion or syncytia. The mechanism used by a given viral strain depends on its external topology and proteome and the type of cell being entered. This comparative review discusses the cellular attachment receptors and entry pathways of dsDNA viruses belonging to the families Adenoviridae, Baculoviridae, Herpesviridae and nucleocytoplasmic large DNA viruses (NCLDVs) belonging to the families Ascoviridae, Asfarviridae, Iridoviridae, Phycodnaviridae, and Poxviridae, and giant viruses belonging to the families Mimiviridae and Marseilleviridae as well as the proposed families Pandoraviridae and Pithoviridae. Although these viruses have several common features (e.g., topology, replication and protein sequence similarities) they utilize different entry pathways to infect wide-range of hosts, including humans, other mammals, invertebrates, fish, protozoa and algae. Similarities and differences between the entry methods used by these virus families are highlighted, with particular emphasis on viral topology and proteins that mediate viral attachment and entry. Cell types that are frequently used to study viral entry are also reviewed, along with other factors that affect virus-host cell interactions.

Journal ArticleDOI
TL;DR: Sequence alignment and phylogenetic analysis of the complete G protein sequences revealed that these isolates were clustered into one monophyletic lineage belonging to the species Siniperca chuatsi rhabdovirus.
Abstract: The Rhabdoviridae is a diverse family of negative-sense single-stranded RNA viruses which infects mammals, birds, reptiles, fish, insects and plants. Herein, we reported the isolation and characterization of 6 novel viruses from diseased fish collected from China including SCRV-QY, SCRV-SS, SCRV-GM, CmRV-FS, MsRV-SS, OmbRV-JM. The typical clinical symptom of diseased fish was hemorrhaging. Efficient propagation of these isolates in a Chinese perch brain cell line was determined by means of observation of cytopathic effect, RT-PCR and electron microscopy. Sequence alignment and phylogenetic analysis of the complete G protein sequences revealed that these isolates were clustered into one monophyletic lineage belonging to the species Siniperca chuatsi rhabdovirus.

Journal ArticleDOI
TL;DR: This study believes this is the first report of bovine norovirus and bovines astrovirus circulating among calves in Egypt, and further epidemiological studies are recommended to investigate their presence on a wider scale, to predict their association with NCD, and to design appropriate diagnostic and control methods.
Abstract: Neonatal calf diarrhea (NCD) is a major cause of morbidity, mortality and economic losses in the beef and dairy industries. This study was conducted to investigate the existence of enteric viruses in two Egyptian farms with a history of recurrent diarrhea. Fecal samples were collected from 25 diarrheic calves. RNA was extracted and tested by reverse transcription polymerase chain reaction (RT-PCR) for the presence of rotavirus, norovirus, astrovirus, torovirus, coronavirus and bovine viral diarrhea virus. Overall, 76 % (19/25) of samples tested positive for one or more viruses. Rota-, noro- and astroviruses were detected in 48 %, 24 % and 32 % of tested samples, respectively. About 37 % (7/19) of positive samples had two different viruses. One-month-old calves were the group most vulnerable to infections. Based on phylogenetic analysis, bovine rotaviruses were of genotypes G6 and G10, bovine noroviruses were in GIII.2, and bovine astroviruses were in the BAstV lineage 1. Astrovirus sequences showed a high level nucleotide sequence similarity with the Brazilian BAstV sequences available in GenBank. We believe this is the first report of bovine norovirus and bovine astrovirus circulating among calves in Egypt. Further epidemiological studies are recommended to investigate their presence on a wider scale, to predict their association with NCD, and to design appropriate diagnostic and control methods.

Journal ArticleDOI
TL;DR: It is suggested that general centrifugation can become a less costly alternative to ultracentrifugation for virus purification by CsCl densiy gradient and will thus encourage research in virology.
Abstract: Virus purification by cesium chloride (CsCl) density gradient, which generally requires an expensive ultracentrifuge, is an essential technique in virology. Here, we optimized virus purification by CsCl density gradient using general centrifugation (40,000 × g, 2 h, 4 °C), which showed almost the same purification ability as conventional CsCl density gradient ultracentrifugation (100,000 × g, 1 h, 4 °C) using phages S13′ and φEF24C. Moreover, adenovirus strain JM1/1 was also successfully purified by this method. We suggest that general centrifugation can become a less costly alternative to ultracentrifugation for virus purification by CsCl densiy gradient and will thus encourage research in virology.

Journal ArticleDOI
TL;DR: It is found that the SVA/HLJ/CHA/2016 strain is closely related to the 2015 US strains, instead of other China isolates, and the importance of SVA surveillance in China should be emphasized.
Abstract: Senecavirus A (SVA) is associated with vesicular disease in swine and the acute death of neonatal piglets. Here, senecavirus A was isolated from a pig displaying vesicular disease in Northeast China. The virus was designated as SVA/HLJ/CHA/2016 and its full-length nucleotide sequence was determined and analyzed in comparison with other known SVA strains. The complete genome sequence of SVA/HLJ/CHA/2016 shares high nucleotide identities, of 93.8 to 99%, with previously reported SVA full-length genomes. Phylogenetic analysis of both the SVA full-length genomes and the VP1 genes revealed that the SVA/HLJ/CHA/2016 strain is closely related to the 2015 US strains, instead of other China isolates. Our finding provides evidence that SVA infection of pigs has occurred in Northeast China, and the importance of SVA surveillance in China should be emphasized.

Journal ArticleDOI
TL;DR: A recently developed isothermal amplification technique, polymerase spiral reaction (PSR), was optimized for the first time for a viral pathogen with reference recombinant plasmid standards from different CPV-2 antigenic variants and found to be highly specific, as it did not react with other putative canine pathogens.
Abstract: Canine parvovirus-2 (CPV-2), which is ubiquitously distributed worldwide, causes severe and often fatal gastroenteritis in dogs. Accurate, differential and rapid diagnosis of canine parvoviral enteritis remains a challenge for clinicians. A recently developed isothermal amplification technique, polymerase spiral reaction (PSR), was optimized for the first time for a viral pathogen with reference recombinant plasmid standards from different CPV-2 antigenic variants (CPV-2, CPV-2a, CPV-2b and CPV-2c) and subsequently validated using clinical samples. Addition of chromogenic substrate SYBR Green I after the completion of the reaction resulted in bright green fluorescence in positive samples, while negative samples and a no-template control remained orange. These results were further substantiated through visualization of a laddering pattern of the PSR-amplified product in an agarose gel in positive cases and the absence of this pattern in no-template control and negative samples. The PSR assay was found to be highly specific, as it did not react with other putative canine pathogens (canine adenovirus 1 and canine distemper virus). The sensitivity of the newly developed PSR technique was compared with that of conventional PCR, real-time PCR and LAMP, using a serial tenfold dilution of canine parvovirus DNA. The detection limit of PSR was found to be at the femtogram level, which is comparable with that of real-time PCR and LAMP, which are ten times more sensitive than conventional PCR. The assay was validated using 90 clinical samples, of which 54 were found positive, while only 45 samples were positive in conventional PCR. This novel assay, which is fully compliant with the 'ASSURED' concept for disease diagnosis, provides a simple, rapid, specific, sensitive and cost-effective method for diagnosis of canine parvoviral enteritis in veterinary clinics.

Journal ArticleDOI
TL;DR: It is suggested that IL-1β plays a key role in trypsin upregulation and has a pathological role in multiple organ failure.
Abstract: Severe influenza is characterized by a cytokine storm, and the influenza virus–cytokine–trypsin cycle is one of the important mechanisms of viral multiplication and multiple organ failure. The aim of this study was to define the key cytokine(s) responsible for trypsin upregulation. Mice were infected with influenza virus strain A/Puerto Rico/8/34 (H1N1) or treated individually or with a combination of interleukin-1β, interleukin-6, and tumor necrosis factor α. The levels of these cytokines and trypsin in the lungs were monitored. The neutralizing effects of anti-IL-1β antibodies on cytokine and trypsin expression in human A549 cells and lung inflammation in the infected mice were examined. Infection induced interleukin-1β, interleukin-6, tumor necrosis factor α, and ectopic trypsin in mouse lungs in a dose- and time-dependent manner. Intraperitoneal administration of interleukin-1β combined with other cytokines tended to upregulate trypsin and cytokine expression in the lungs, but the combination without interleukin-1β did not induce trypsin. In contrast, incubation of A549 cells with interleukin-1β alone induced both cytokines and trypsin, and anti-interleukin-1β antibody treatment abrogated these effects. Administration of the antibody in the infected mice reduced lung inflammation area. These findings suggest that IL-1β plays a key role in trypsin upregulation and has a pathological role in multiple organ failure.

Journal ArticleDOI
TL;DR: Feline morbillivirus RNA shedding mostly in the urine of cats without clinical, laboratorial, or ultrasonographic signs of urinary tract diseases suggests a possible widespread distribution of this viral agent on the American continent.
Abstract: Feline morbillivirus was first identified in healthy and diseased stray cats captured in Hong Kong. Recently, it was demonstrated that the virus circulates within cat populations in Japan, Italy, Germany, and the USA. Importantly, an association between feline morbillivirus infection and chronic kidney disease was suggested by histological analysis of kidney tissue of infected cats. The aim of this study was to verify the presence and examine the genetic diversity of feline morbilliviruses associated with infections of domestic cats in Brazil. Seventeen cats without clinical manifestations of urinary tract diseases from a multi-cat household and 35 random client-owned cats admitted to the Teaching Veterinary Hospital for a variety of reasons were evaluated for paramyxoviral infection and the presence of uropathy. A fragment of the paramyxoviral L gene was amplified from urine samples using a reverse transcription semi-nested PCR assay. For the first time, we detected a feline morbillivirus strain that was genetically related to viral strains previously characterized in Japan in urine samples from cats in South America, in Brazil. This together with the recent description of feline morbillivirus identification within cat populations in the USA, suggests a possible widespread distribution of this viral agent on the American continent. Our data demonstrated feline morbillivirus RNA shedding mostly in the urine of cats without clinical, laboratorial, or ultrasonographic signs of urinary tract diseases. In contrast to previously published findings that associated feline morbillivirus infection with chronic kidney disease, we did not observe a clear relationship between feline morbillivirus RNA shedding in urine and kidney disease in the cats evaluated.

Journal ArticleDOI
TL;DR: Clinical and phylogenetic analysis suggested that Vietnamese G1P[8] double-gene reassortant strains originated from a locally circulating G2P[4] strain and caused severe diarrhoea, but there was no evidence of increased virulence.
Abstract: Rotavirus A (RVA) strains, a leading cause of severe gastroenteritis in children worldwide, commonly possess the Wa or DS-1 genotype constellations. During a hospital-based study conducted in Hanoi, Vietnam, in the 2012-2013 rotavirus season, G1P[8] strains with a virtually identical short RNA migration pattern were detected in 20 (14%) of 141 rotavirus-positive samples. Two representatives of these strains were shown by whole-genome sequencing to be double-gene reassortants possessing the genotype constellation of G1-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Sequencing and a database search revealed that these Vietnamese G1P[8] double-gene reassortant strains shared an immediate ancestor with a locally circulating G2P[4] strain in all of the inner-capsid and non-structural protein genes, whereas they were more closely related in the VP7 and VP4 genes to a Chinese G1P[8] strain and a Chinese G3P[8] strain, respectively, than to locally circulating G1P[8] strains. Despite the marked similarity between Japanese and Thai G1P[8] double-gene reassortant strains, phylogenetic analysis suggested that the Vietnamese and Japanese/Thai G1P[8] double-gene reassortant strains originated from independent reassortment events. Clinically, children infected with Vietnamese G1P[8] double-gene reassortant strains experienced severe diarrhoea, but it was not more severe than that in children infected with ordinary G1P[8] strains. In conclusion, Vietnamese G1P[8] double-gene reassortant strains originated from a locally circulating G2P[4] strain and caused severe diarrhoea, but there was no evidence of increased virulence.

Journal ArticleDOI
TL;DR: The interaction of HBV genome products with components of the Wnt/β–catenin signaling pathway that results in the enhancement of the pathway and leads to hepatocarcinogenesis is explored.
Abstract: Hepatitis B virus (HBV) has a global distribution and is one of the leading causes of hepatocellular carcinoma. The precise mechanism of pathogenicity of HBV-associated hepatocellular carcinoma (HCC) is not yet fully understood. Viral-related proteins are known to take control of several cellular pathways like Wnt/β-catenin, TGF-β, Raf/MAPK and ROS for the virus’s own replication. This affects cellular persistence, multiplication, migration, alteration and genomic instability. The Wnt/FZD/β-catenin signaling pathway plays a significant role in the pathology and physiology of the liver and has been identified as a main factor in HCC development. The role of β-catenin is linked mainly to the canonical pathway of the signaling system. Progression of liver diseases is known to be accompanied by disturbances in β-catenin expression (mainly overexpression), with its cytoplasmic or nuclear translocation. In recent years, studies have documented that the HBV X protein and hepatitis B surface antigen (HBsAg) can act as pathogenic factors that are involved in the modulation and induction of canonical Wnt signaling pathway. In the present review we explore the interaction of HBV genome products with components of the Wnt/β–catenin signaling pathway that results in the enhancement of the pathway and leads to hepatocarcinogenesis.