scispace - formally typeset
Journal ArticleDOI

A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor

TLDR
An approach based on a metal–oxide–semiconductor (MOS) capacitor structure embedded in a silicon waveguide that can produce high-speed optical phase modulation is described and an all-silicon optical modulator with a modulation bandwidth exceeding 1 GHz is demonstrated.
Abstract
Silicon has long been the optimal material for electronics, but it is only relatively recently that it has been considered as a material option for photonics1. One of the key limitations for using silicon as a photonic material has been the relatively low speed of silicon optical modulators compared to those fabricated from III–V semiconductor compounds2,3,4,5,6 and/or electro-optic materials such as lithium niobate7,8,9. To date, the fastest silicon-waveguide-based optical modulator that has been demonstrated experimentally has a modulation frequency of only ∼20 MHz (refs 10, 11), although it has been predicted theoretically that a ∼1-GHz modulation frequency might be achievable in some device structures12,13. Here we describe an approach based on a metal–oxide–semiconductor (MOS) capacitor structure embedded in a silicon waveguide that can produce high-speed optical phase modulation: we demonstrate an all-silicon optical modulator with a modulation bandwidth exceeding 1 GHz. As this technology is compatible with conventional complementary MOS (CMOS) processing, monolithic integration of the silicon modulator with advanced electronics on a single silicon substrate becomes possible.

read more

Citations
More filters
Journal ArticleDOI

Optical Modulation by Conducting Interfaces

TL;DR: In this paper, the authors analyzed the interaction of a propagating guided electromagnetic wave with a quantum well embedded in a dielectric slab waveguide and derived the eigenstates of electrons and holes and the transition dipole moments.
Patent

High speed semiconductor waveguide phase-shifter

TL;DR: An optical phase shifter (100) comprises a semiconductor waveguide (105), which includes a core region (116) and a doped region (115a, 115b) containing free charges (electrons or holes), which can be steered into or removed from the wave guide, where an optical beam (150) propagates as mentioned in this paper.
Journal ArticleDOI

Diversity of DNA Nanostructures and Applications in Oncotherapy

TL;DR: An account of the wide range of nanostructures composed of DNA sequences and related advances in oncotherapy using aptamers and chemical drugs is given, bringing in highly selective targeting and killing abilities for the modified DNA nanostructure (DNs).
Journal ArticleDOI

Design of a silicon-based field-effect electro-optic modulator with enhanced light–charge interaction

TL;DR: It is shown that the optimal relative placement of the ultrathin field-effect-generated charge layers and the optical mode in the strong-confinement waveguides leads to more than an order-of-magnitude enhancement in the light-charge interaction compared with the recent predictions in the literature.
Journal ArticleDOI

Optical Modulation by Conducting Interfaces

TL;DR: In this article, the authors analyzed the interaction of a propagating guided electromagnetic wave with a quantum well embedded in a dielectric slab waveguide and showed that the two-dimensional electron gas behaves as a conducting interface, whose conductivity can be modified by controlling the populations of electrons and holes.
References
More filters
Proceedings Article

Physics of semiconductor devices

S. M. Sze
Journal ArticleDOI

Electrooptical effects in silicon

TL;DR: In this article, a numerical Kramers-Kronig analysis is used to predict the refractive index perturbations produced in crystalline silicon by applied electric fields or by charge carriers.
Journal ArticleDOI

A review of lithium niobate modulators for fiber-optic communications systems

TL;DR: The lithium-niobate external-modulator technology meets the performance and reliability requirements of current 2.5-, 10-Gb/s digital communication systems, as well as CATV analog systems, and multiple high-speed modulation functions have been achieved in a single device.
Journal ArticleDOI

Silicon-based optoelectronics

TL;DR: In this article, a review of Si-based photonic components and optoelectronic integration techniques, both hybrid and monolithic, is presented, with a focus on column IV materials (Si, Ge, C and Sn).
Related Papers (5)