scispace - formally typeset
Open AccessJournal ArticleDOI

Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization

Reads0
Chats0
TLDR
It is shown that a tunable array of biodegradable nan oneedles fabricated by metal-assisted chemical etching of silicon can access the cytosol to co-deliver DNA and siRNA with an efficiency greater than 90%, and that in vivo the nanoneedles transfect the VEGF-165 gene, inducing sustained neovascularization and a localized sixfold increase in blood perfusion in a target region of the muscle.
Abstract
The controlled delivery of nucleic acids to selected tissues remains an inefficient process mired by low transfection efficacy, poor scalability because of varying efficiency with cell type and location, and questionable safety as a result of toxicity issues arising from the typical materials and procedures employed. High efficiency and minimal toxicity in vitro has been shown for intracellular delivery of nuclei acids by using nanoneedles, yet extending these characteristics to in vivo delivery has been difficult, as current interfacing strategies rely on complex equipment or active cell internalization through prolonged interfacing. Here, we show that a tunable array of biodegradable nanoneedles fabricated by metal-assisted chemical etching of silicon can access the cytosol to co-deliver DNA and siRNA with an efficiency greater than 90%, and that in vivo the nanoneedles transfect the VEGF-165 gene, inducing sustained neovascularization and a localized sixfold increase in blood perfusion in a target region of the muscle.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Diverse Applications of Nanomedicine

Beatriz Pelaz, +91 more
- 14 Mar 2017 - 
TL;DR: An overview of recent developments in nanomedicine is provided and the current challenges and upcoming opportunities for the field are highlighted and translation to the clinic is highlighted.
Journal ArticleDOI

Enhanced Cancer Immunotherapy by Microneedle Patch-Assisted Delivery of Anti-PD1 Antibody

TL;DR: It is found that a single administration of the MN patch induces robust immune responses in a B16F10 mouse melanoma model compared to MN without degradation trigger or intratumoral injection of free aPD1 with the same dose.
Journal ArticleDOI

Advanced Soft Materials, Sensor Integrations, and Applications of Wearable Flexible Hybrid Electronics in Healthcare, Energy, and Environment.

TL;DR: An all-inclusive review of the newly developed WFHE along with a summary of imperative requirements of material properties, sensor capabilities, electronics performance, and skin integrations is provided.
Journal ArticleDOI

Degradability and Clearance of Silicon, Organosilica, Silsesquioxane, Silica Mixed Oxide, and Mesoporous Silica Nanoparticles.

TL;DR: The degradability and clearance timelines of various siliceous nanomaterials are compared and it is highlighted that researchers can select a specific nanommaterial in this large family according to the targeted applications and the required clearance kinetics.
References
More filters
Journal ArticleDOI

Vascular-specific growth factors and blood vessel formation

TL;DR: New findings in newly discovered vascular growth factors demand re-evaluation of therapeutic efforts aimed at regulating blood vessel growth in ischaemia, cancer and other pathological settings.
Journal ArticleDOI

Knocking down barriers: advances in siRNA delivery

TL;DR: An update on the progress of RNAi therapeutics is provided and novel synthetic materials for the encapsulation and intracellular delivery of nucleic acids are highlighted.
Journal ArticleDOI

Growth factors and cytokines in wound healing.

TL;DR: A review of the specific roles of these growth factors and cytokines during wound healing can be found in this article, where patients are treated by three growth factors: PDGF-BB, bFGF, and GM-CSF.
Journal ArticleDOI

Progress and problems with the use of viral vectors for gene therapy

TL;DR: With the development of a leukaemia-like syndrome in two patients cured of a disease by gene therapy, it is timely to contemplate how far this technology has come, and how far it still has to go.
Journal ArticleDOI

Synthetic DNA delivery systems.

TL;DR: The ability to safely and efficiently transfer foreign DNA into cells is a fundamental goal in biotechnology and rapid advances have recently been made in understanding of mechanisms for DNA stability and transport within cells.
Related Papers (5)